Extensions 1→N→G→Q→1 with N=C3 and Q=D4×D9

Direct product G=N×Q with N=C3 and Q=D4×D9
dρLabelID
C3×D4×D9724C3xD4xD9432,356

Semidirect products G=N:Q with N=C3 and Q=D4×D9
extensionφ:Q→Aut NdρLabelID
C31(D4×D9) = D9×D12φ: D4×D9/C4×D9C2 ⊆ Aut C3724+C3:1(D4xD9)432,292
C32(D4×D9) = C36⋊D6φ: D4×D9/D36C2 ⊆ Aut C3724C3:2(D4xD9)432,293
C33(D4×D9) = D18⋊D6φ: D4×D9/C9⋊D4C2 ⊆ Aut C3364+C3:3(D4xD9)432,315
C34(D4×D9) = D4×C9⋊S3φ: D4×D9/D4×C9C2 ⊆ Aut C3108C3:4(D4xD9)432,388
C35(D4×D9) = D9×C3⋊D4φ: D4×D9/C22×D9C2 ⊆ Aut C3724C3:5(D4xD9)432,314

Non-split extensions G=N.Q with N=C3 and Q=D4×D9
extensionφ:Q→Aut NdρLabelID
C3.(D4×D9) = D4×D27φ: D4×D9/D4×C9C2 ⊆ Aut C31084+C3.(D4xD9)432,47

׿
×
𝔽