Extensions 1→N→G→Q→1 with N=C3 and Q=D6.6D6

Direct product G=N×Q with N=C3 and Q=D6.6D6

Semidirect products G=N:Q with N=C3 and Q=D6.6D6
extensionφ:Q→Aut NdρLabelID
C31(D6.6D6) = Dic3.S32φ: D6.6D6/C6.D6C2 ⊆ Aut C3248+C3:1(D6.6D6)432,612
C32(D6.6D6) = D6.3S32φ: D6.6D6/C3⋊D12C2 ⊆ Aut C3248+C3:2(D6.6D6)432,609
C33(D6.6D6) = C12.40S32φ: D6.6D6/C3×Dic6C2 ⊆ Aut C372C3:3(D6.6D6)432,665
C34(D6.6D6) = C12.58S32φ: D6.6D6/S3×C12C2 ⊆ Aut C372C3:4(D6.6D6)432,669
C35(D6.6D6) = C12⋊S312S3φ: D6.6D6/C12⋊S3C2 ⊆ Aut C3484C3:5(D6.6D6)432,688

Non-split extensions G=N.Q with N=C3 and Q=D6.6D6
extensionφ:Q→Aut NdρLabelID
C3.1(D6.6D6) = Dic65D9φ: D6.6D6/C3×Dic6C2 ⊆ Aut C3724+C3.1(D6.6D6)432,282
C3.2(D6.6D6) = Dic9.D6φ: D6.6D6/S3×C12C2 ⊆ Aut C3724+C3.2(D6.6D6)432,289
C3.3(D6.6D6) = C12.S32φ: D6.6D6/C12⋊S3C2 ⊆ Aut C37212-C3.3(D6.6D6)432,299