Extensions 1→N→G→Q→1 with N=C3 and Q=S3xD12

Direct product G=NxQ with N=C3 and Q=S3xD12
dρLabelID
C3xS3xD12484C3xS3xD12432,649

Semidirect products G=N:Q with N=C3 and Q=S3xD12
extensionφ:Q→Aut NdρLabelID
C3:1(S3xD12) = C3:S3:4D12φ: S3xD12/C3:D12C2 ⊆ Aut C3248+C3:1(S3xD12)432,602
C3:2(S3xD12) = S3xC12:S3φ: S3xD12/S3xC12C2 ⊆ Aut C372C3:2(S3xD12)432,671
C3:3(S3xD12) = C3:S3xD12φ: S3xD12/C3xD12C2 ⊆ Aut C372C3:3(S3xD12)432,672
C3:4(S3xD12) = C12:3S32φ: S3xD12/C12:S3C2 ⊆ Aut C3484C3:4(S3xD12)432,691
C3:5(S3xD12) = S3xC3:D12φ: S3xD12/C2xS32C2 ⊆ Aut C3248+C3:5(S3xD12)432,598

Non-split extensions G=N.Q with N=C3 and Q=S3xD12
extensionφ:Q→Aut NdρLabelID
C3.1(S3xD12) = S3xD36φ: S3xD12/S3xC12C2 ⊆ Aut C3724+C3.1(S3xD12)432,291
C3.2(S3xD12) = D9xD12φ: S3xD12/C3xD12C2 ⊆ Aut C3724+C3.2(S3xD12)432,292
C3.3(S3xD12) = C3:S3:D12φ: S3xD12/C12:S3C2 ⊆ Aut C33612+C3.3(S3xD12)432,301

׿
x
:
Z
F
o
wr
Q
<