Extensions 1→N→G→Q→1 with N=C3 and Q=D6.4D6

Direct product G=N×Q with N=C3 and Q=D6.4D6

Semidirect products G=N:Q with N=C3 and Q=D6.4D6
extensionφ:Q→Aut NdρLabelID
C31(D6.4D6) = D6.4S32φ: D6.4D6/S3×Dic3C2 ⊆ Aut C3488-C3:1(D6.4D6)432,608
C32(D6.4D6) = D6⋊S3⋊S3φ: D6.4D6/D6⋊S3C2 ⊆ Aut C3488-C3:2(D6.4D6)432,610
C33(D6.4D6) = D6.6S32φ: D6.4D6/C322Q8C2 ⊆ Aut C3488-C3:3(D6.4D6)432,611
C34(D6.4D6) = C62.91D6φ: D6.4D6/C3×C3⋊D4C2 ⊆ Aut C372C3:4(D6.4D6)432,676
C35(D6.4D6) = C62.96D6φ: D6.4D6/C2×C3⋊Dic3C2 ⊆ Aut C3244C3:5(D6.4D6)432,693

Non-split extensions G=N.Q with N=C3 and Q=D6.4D6
extensionφ:Q→Aut NdρLabelID
C3.1(D6.4D6) = D18.4D6φ: D6.4D6/C3×C3⋊D4C2 ⊆ Aut C3724-C3.1(D6.4D6)432,310
C3.2(D6.4D6) = C62.9D6φ: D6.4D6/C2×C3⋊Dic3C2 ⊆ Aut C3726C3.2(D6.4D6)432,319