Extensions 1→N→G→Q→1 with N=C24 and Q=C3⋊S3

Direct product G=N×Q with N=C24 and Q=C3⋊S3
dρLabelID
C3⋊S3×C24144C3:S3xC24432,480

Semidirect products G=N:Q with N=C24 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C241(C3⋊S3) = C3312D8φ: C3⋊S3/C32C2 ⊆ Aut C24216C24:1(C3:S3)432,499
C242(C3⋊S3) = C3321SD16φ: C3⋊S3/C32C2 ⊆ Aut C24216C24:2(C3:S3)432,498
C243(C3⋊S3) = C3×C325D8φ: C3⋊S3/C32C2 ⊆ Aut C24144C24:3(C3:S3)432,483
C244(C3⋊S3) = C8×C33⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C24216C24:4(C3:S3)432,496
C245(C3⋊S3) = C3315M4(2)φ: C3⋊S3/C32C2 ⊆ Aut C24216C24:5(C3:S3)432,497
C246(C3⋊S3) = C3×C242S3φ: C3⋊S3/C32C2 ⊆ Aut C24144C24:6(C3:S3)432,482
C247(C3⋊S3) = C3×C24⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C24144C24:7(C3:S3)432,481

Non-split extensions G=N.Q with N=C24 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C24.1(C3⋊S3) = C24.D9φ: C3⋊S3/C32C2 ⊆ Aut C24432C24.1(C3:S3)432,168
C24.2(C3⋊S3) = C721S3φ: C3⋊S3/C32C2 ⊆ Aut C24216C24.2(C3:S3)432,172
C24.3(C3⋊S3) = C3312Q16φ: C3⋊S3/C32C2 ⊆ Aut C24432C24.3(C3:S3)432,500
C24.4(C3⋊S3) = C24⋊D9φ: C3⋊S3/C32C2 ⊆ Aut C24216C24.4(C3:S3)432,171
C24.5(C3⋊S3) = He35D8φ: C3⋊S3/C32C2 ⊆ Aut C24726C24.5(C3:S3)432,176
C24.6(C3⋊S3) = He35Q16φ: C3⋊S3/C32C2 ⊆ Aut C241446C24.6(C3:S3)432,177
C24.7(C3⋊S3) = C3×C325Q16φ: C3⋊S3/C32C2 ⊆ Aut C24144C24.7(C3:S3)432,484
C24.8(C3⋊S3) = C72.S3φ: C3⋊S3/C32C2 ⊆ Aut C24432C24.8(C3:S3)432,32
C24.9(C3⋊S3) = C8×C9⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C24216C24.9(C3:S3)432,169
C24.10(C3⋊S3) = C72⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C24216C24.10(C3:S3)432,170
C24.11(C3⋊S3) = C337C16φ: C3⋊S3/C32C2 ⊆ Aut C24432C24.11(C3:S3)432,231
C24.12(C3⋊S3) = He37SD16φ: C3⋊S3/C32C2 ⊆ Aut C24726C24.12(C3:S3)432,175
C24.13(C3⋊S3) = He36M4(2)φ: C3⋊S3/C32C2 ⊆ Aut C24726C24.13(C3:S3)432,174
C24.14(C3⋊S3) = He34C16central extension (φ=1)1443C24.14(C3:S3)432,33
C24.15(C3⋊S3) = C8×He3⋊C2central extension (φ=1)723C24.15(C3:S3)432,173
C24.16(C3⋊S3) = C3×C24.S3central extension (φ=1)144C24.16(C3:S3)432,230

׿
×
𝔽