Copied to
clipboard

G = He3:7SD16order 432 = 24·33

2nd semidirect product of He3 and SD16 acting via SD16/C8=C2

non-abelian, supersoluble, monomial

Aliases: He3:7SD16, (C3xC24):4S3, (C8xHe3):4C2, He3:4Q8:7C2, (C3xC12).46D6, (C3xC6).23D12, C24.12(C3:S3), C8:2(He3:C2), (C2xHe3).22D4, He3:5D4.3C2, C3.2(C24:2S3), C32:6(C24:C2), C2.3(He3:5D4), C6.27(C12:S3), (C4xHe3).35C22, C12.79(C2xC3:S3), C4.8(C2xHe3:C2), SmallGroup(432,175)

Series: Derived Chief Lower central Upper central

C1C3C4xHe3 — He3:7SD16
C1C3C32He3C2xHe3C4xHe3He3:5D4 — He3:7SD16
He3C2xHe3C4xHe3 — He3:7SD16
C1C6C12C24

Generators and relations for He3:7SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d3 >

Subgroups: 549 in 110 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, SD16, C3xS3, C3xC6, C24, C24, Dic6, D12, C3xD4, C3xQ8, He3, C3xDic3, C3xC12, S3xC6, C24:C2, C3xSD16, He3:C2, C2xHe3, C3xC24, C3xDic6, C3xD12, He3:3C4, C4xHe3, C2xHe3:C2, C3xC24:C2, C8xHe3, He3:4Q8, He3:5D4, He3:7SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3:S3, D12, C2xC3:S3, C24:C2, He3:C2, C12:S3, C2xHe3:C2, C24:2S3, He3:5D4, He3:7SD16

Smallest permutation representation of He3:7SD16
On 72 points
Generators in S72
(1 68 56)(2 69 49)(3 70 50)(4 71 51)(5 72 52)(6 65 53)(7 66 54)(8 67 55)(9 57 33)(10 58 34)(11 59 35)(12 60 36)(13 61 37)(14 62 38)(15 63 39)(16 64 40)(17 41 27)(18 42 28)(19 43 29)(20 44 30)(21 45 31)(22 46 32)(23 47 25)(24 48 26)
(1 15 41)(2 16 42)(3 9 43)(4 10 44)(5 11 45)(6 12 46)(7 13 47)(8 14 48)(17 56 39)(18 49 40)(19 50 33)(20 51 34)(21 52 35)(22 53 36)(23 54 37)(24 55 38)(25 66 61)(26 67 62)(27 68 63)(28 69 64)(29 70 57)(30 71 58)(31 72 59)(32 65 60)
(1 27 17)(2 28 18)(3 29 19)(4 30 20)(5 31 21)(6 32 22)(7 25 23)(8 26 24)(9 70 50)(10 71 51)(11 72 52)(12 65 53)(13 66 54)(14 67 55)(15 68 56)(16 69 49)(33 43 57)(34 44 58)(35 45 59)(36 46 60)(37 47 61)(38 48 62)(39 41 63)(40 42 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 27)(18 30)(19 25)(20 28)(21 31)(22 26)(23 29)(24 32)(33 61)(34 64)(35 59)(36 62)(37 57)(38 60)(39 63)(40 58)(42 44)(43 47)(46 48)(49 71)(50 66)(51 69)(52 72)(53 67)(54 70)(55 65)(56 68)

G:=sub<Sym(72)| (1,68,56)(2,69,49)(3,70,50)(4,71,51)(5,72,52)(6,65,53)(7,66,54)(8,67,55)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,41,27)(18,42,28)(19,43,29)(20,44,30)(21,45,31)(22,46,32)(23,47,25)(24,48,26), (1,15,41)(2,16,42)(3,9,43)(4,10,44)(5,11,45)(6,12,46)(7,13,47)(8,14,48)(17,56,39)(18,49,40)(19,50,33)(20,51,34)(21,52,35)(22,53,36)(23,54,37)(24,55,38)(25,66,61)(26,67,62)(27,68,63)(28,69,64)(29,70,57)(30,71,58)(31,72,59)(32,65,60), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,31,21)(6,32,22)(7,25,23)(8,26,24)(9,70,50)(10,71,51)(11,72,52)(12,65,53)(13,66,54)(14,67,55)(15,68,56)(16,69,49)(33,43,57)(34,44,58)(35,45,59)(36,46,60)(37,47,61)(38,48,62)(39,41,63)(40,42,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,27)(18,30)(19,25)(20,28)(21,31)(22,26)(23,29)(24,32)(33,61)(34,64)(35,59)(36,62)(37,57)(38,60)(39,63)(40,58)(42,44)(43,47)(46,48)(49,71)(50,66)(51,69)(52,72)(53,67)(54,70)(55,65)(56,68)>;

G:=Group( (1,68,56)(2,69,49)(3,70,50)(4,71,51)(5,72,52)(6,65,53)(7,66,54)(8,67,55)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,41,27)(18,42,28)(19,43,29)(20,44,30)(21,45,31)(22,46,32)(23,47,25)(24,48,26), (1,15,41)(2,16,42)(3,9,43)(4,10,44)(5,11,45)(6,12,46)(7,13,47)(8,14,48)(17,56,39)(18,49,40)(19,50,33)(20,51,34)(21,52,35)(22,53,36)(23,54,37)(24,55,38)(25,66,61)(26,67,62)(27,68,63)(28,69,64)(29,70,57)(30,71,58)(31,72,59)(32,65,60), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,31,21)(6,32,22)(7,25,23)(8,26,24)(9,70,50)(10,71,51)(11,72,52)(12,65,53)(13,66,54)(14,67,55)(15,68,56)(16,69,49)(33,43,57)(34,44,58)(35,45,59)(36,46,60)(37,47,61)(38,48,62)(39,41,63)(40,42,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,27)(18,30)(19,25)(20,28)(21,31)(22,26)(23,29)(24,32)(33,61)(34,64)(35,59)(36,62)(37,57)(38,60)(39,63)(40,58)(42,44)(43,47)(46,48)(49,71)(50,66)(51,69)(52,72)(53,67)(54,70)(55,65)(56,68) );

G=PermutationGroup([[(1,68,56),(2,69,49),(3,70,50),(4,71,51),(5,72,52),(6,65,53),(7,66,54),(8,67,55),(9,57,33),(10,58,34),(11,59,35),(12,60,36),(13,61,37),(14,62,38),(15,63,39),(16,64,40),(17,41,27),(18,42,28),(19,43,29),(20,44,30),(21,45,31),(22,46,32),(23,47,25),(24,48,26)], [(1,15,41),(2,16,42),(3,9,43),(4,10,44),(5,11,45),(6,12,46),(7,13,47),(8,14,48),(17,56,39),(18,49,40),(19,50,33),(20,51,34),(21,52,35),(22,53,36),(23,54,37),(24,55,38),(25,66,61),(26,67,62),(27,68,63),(28,69,64),(29,70,57),(30,71,58),(31,72,59),(32,65,60)], [(1,27,17),(2,28,18),(3,29,19),(4,30,20),(5,31,21),(6,32,22),(7,25,23),(8,26,24),(9,70,50),(10,71,51),(11,72,52),(12,65,53),(13,66,54),(14,67,55),(15,68,56),(16,69,49),(33,43,57),(34,44,58),(35,45,59),(36,46,60),(37,47,61),(38,48,62),(39,41,63),(40,42,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,27),(18,30),(19,25),(20,28),(21,31),(22,26),(23,29),(24,32),(33,61),(34,64),(35,59),(36,62),(37,57),(38,60),(39,63),(40,58),(42,44),(43,47),(46,48),(49,71),(50,66),(51,69),(52,72),(53,67),(54,70),(55,65),(56,68)]])

53 conjugacy classes

class 1 2A2B3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G6H8A8B12A12B12C···12J12K12L24A24B24C24D24E···24T
order122333333446666666688121212···1212122424242424···24
size1136116666236116666363622226···6363622226···6

53 irreducible representations

dim11112222223366
type++++++++
imageC1C2C2C2S3D4D6SD16D12C24:C2He3:C2C2xHe3:C2He3:5D4He3:7SD16
kernelHe3:7SD16C8xHe3He3:4Q8He3:5D4C3xC24C2xHe3C3xC12He3C3xC6C32C8C4C2C1
# reps111141428164424

Matrix representation of He3:7SD16 in GL5(F73)

01000
7272000
00010
00001
00100
,
10000
01000
006400
000640
000064
,
7272000
10000
000640
00001
00800
,
2562000
1136000
007200
000720
000072
,
01000
10000
00100
00001
00010

G:=sub<GL(5,GF(73))| [0,72,0,0,0,1,72,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,64,0,0,0,0,0,64,0,0,0,0,0,64],[72,1,0,0,0,72,0,0,0,0,0,0,0,0,8,0,0,64,0,0,0,0,0,1,0],[25,11,0,0,0,62,36,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

He3:7SD16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_7{\rm SD}_{16}
% in TeX

G:=Group("He3:7SD16");
// GroupNames label

G:=SmallGroup(432,175);
// by ID

G=gap.SmallGroup(432,175);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,36,254,58,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<