Copied to
clipboard

G = He35Q16order 432 = 24·33

2nd semidirect product of He3 and Q16 acting via Q16/C8=C2

non-abelian, supersoluble, monomial

Aliases: He35Q16, C324Dic12, (C3×C24).4S3, C24.6(C3⋊S3), (C3×C6).25D12, (C3×C12).48D6, C8.(He3⋊C2), (C8×He3).2C2, (C2×He3).24D4, He34Q8.3C2, C2.5(He35D4), C6.29(C12⋊S3), C3.2(C325Q16), (C4×He3).37C22, C12.81(C2×C3⋊S3), C4.10(C2×He3⋊C2), SmallGroup(432,177)

Series: Derived Chief Lower central Upper central

C1C3C4×He3 — He35Q16
C1C3C32He3C2×He3C4×He3He34Q8 — He35Q16
He3C2×He3C4×He3 — He35Q16
C1C6C12C24

Generators and relations for He35Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 377 in 99 conjugacy classes, 31 normal (13 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, Dic3, C12, C12, Q16, C3×C6, C24, C24, Dic6, C3×Q8, He3, C3×Dic3, C3×C12, Dic12, C3×Q16, C2×He3, C3×C24, C3×Dic6, He33C4, C4×He3, C3×Dic12, C8×He3, He34Q8, He35Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊S3, D12, C2×C3⋊S3, Dic12, He3⋊C2, C12⋊S3, C2×He3⋊C2, C325Q16, He35D4, He35Q16

Smallest permutation representation of He35Q16
On 144 points
Generators in S144
(25 38 62)(26 39 63)(27 40 64)(28 33 57)(29 34 58)(30 35 59)(31 36 60)(32 37 61)(49 95 137)(50 96 138)(51 89 139)(52 90 140)(53 91 141)(54 92 142)(55 93 143)(56 94 144)(65 123 104)(66 124 97)(67 125 98)(68 126 99)(69 127 100)(70 128 101)(71 121 102)(72 122 103)(73 112 120)(74 105 113)(75 106 114)(76 107 115)(77 108 116)(78 109 117)(79 110 118)(80 111 119)
(1 86 134)(2 87 135)(3 88 136)(4 81 129)(5 82 130)(6 83 131)(7 84 132)(8 85 133)(9 43 20)(10 44 21)(11 45 22)(12 46 23)(13 47 24)(14 48 17)(15 41 18)(16 42 19)(25 62 38)(26 63 39)(27 64 40)(28 57 33)(29 58 34)(30 59 35)(31 60 36)(32 61 37)(49 95 137)(50 96 138)(51 89 139)(52 90 140)(53 91 141)(54 92 142)(55 93 143)(56 94 144)(65 104 123)(66 97 124)(67 98 125)(68 99 126)(69 100 127)(70 101 128)(71 102 121)(72 103 122)(73 112 120)(74 105 113)(75 106 114)(76 107 115)(77 108 116)(78 109 117)(79 110 118)(80 111 119)
(1 102 118)(2 103 119)(3 104 120)(4 97 113)(5 98 114)(6 99 115)(7 100 116)(8 101 117)(9 35 56)(10 36 49)(11 37 50)(12 38 51)(13 39 52)(14 40 53)(15 33 54)(16 34 55)(17 64 141)(18 57 142)(19 58 143)(20 59 144)(21 60 137)(22 61 138)(23 62 139)(24 63 140)(25 89 46)(26 90 47)(27 91 48)(28 92 41)(29 93 42)(30 94 43)(31 95 44)(32 96 45)(65 112 136)(66 105 129)(67 106 130)(68 107 131)(69 108 132)(70 109 133)(71 110 134)(72 111 135)(73 88 123)(74 81 124)(75 82 125)(76 83 126)(77 84 127)(78 85 128)(79 86 121)(80 87 122)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 20 5 24)(2 19 6 23)(3 18 7 22)(4 17 8 21)(9 82 13 86)(10 81 14 85)(11 88 15 84)(12 87 16 83)(25 111 29 107)(26 110 30 106)(27 109 31 105)(28 108 32 112)(33 77 37 73)(34 76 38 80)(35 75 39 79)(36 74 40 78)(41 132 45 136)(42 131 46 135)(43 130 47 134)(44 129 48 133)(49 124 53 128)(50 123 54 127)(51 122 55 126)(52 121 56 125)(57 116 61 120)(58 115 62 119)(59 114 63 118)(60 113 64 117)(65 92 69 96)(66 91 70 95)(67 90 71 94)(68 89 72 93)(97 141 101 137)(98 140 102 144)(99 139 103 143)(100 138 104 142)

G:=sub<Sym(144)| (25,38,62)(26,39,63)(27,40,64)(28,33,57)(29,34,58)(30,35,59)(31,36,60)(32,37,61)(49,95,137)(50,96,138)(51,89,139)(52,90,140)(53,91,141)(54,92,142)(55,93,143)(56,94,144)(65,123,104)(66,124,97)(67,125,98)(68,126,99)(69,127,100)(70,128,101)(71,121,102)(72,122,103)(73,112,120)(74,105,113)(75,106,114)(76,107,115)(77,108,116)(78,109,117)(79,110,118)(80,111,119), (1,86,134)(2,87,135)(3,88,136)(4,81,129)(5,82,130)(6,83,131)(7,84,132)(8,85,133)(9,43,20)(10,44,21)(11,45,22)(12,46,23)(13,47,24)(14,48,17)(15,41,18)(16,42,19)(25,62,38)(26,63,39)(27,64,40)(28,57,33)(29,58,34)(30,59,35)(31,60,36)(32,61,37)(49,95,137)(50,96,138)(51,89,139)(52,90,140)(53,91,141)(54,92,142)(55,93,143)(56,94,144)(65,104,123)(66,97,124)(67,98,125)(68,99,126)(69,100,127)(70,101,128)(71,102,121)(72,103,122)(73,112,120)(74,105,113)(75,106,114)(76,107,115)(77,108,116)(78,109,117)(79,110,118)(80,111,119), (1,102,118)(2,103,119)(3,104,120)(4,97,113)(5,98,114)(6,99,115)(7,100,116)(8,101,117)(9,35,56)(10,36,49)(11,37,50)(12,38,51)(13,39,52)(14,40,53)(15,33,54)(16,34,55)(17,64,141)(18,57,142)(19,58,143)(20,59,144)(21,60,137)(22,61,138)(23,62,139)(24,63,140)(25,89,46)(26,90,47)(27,91,48)(28,92,41)(29,93,42)(30,94,43)(31,95,44)(32,96,45)(65,112,136)(66,105,129)(67,106,130)(68,107,131)(69,108,132)(70,109,133)(71,110,134)(72,111,135)(73,88,123)(74,81,124)(75,82,125)(76,83,126)(77,84,127)(78,85,128)(79,86,121)(80,87,122), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,20,5,24)(2,19,6,23)(3,18,7,22)(4,17,8,21)(9,82,13,86)(10,81,14,85)(11,88,15,84)(12,87,16,83)(25,111,29,107)(26,110,30,106)(27,109,31,105)(28,108,32,112)(33,77,37,73)(34,76,38,80)(35,75,39,79)(36,74,40,78)(41,132,45,136)(42,131,46,135)(43,130,47,134)(44,129,48,133)(49,124,53,128)(50,123,54,127)(51,122,55,126)(52,121,56,125)(57,116,61,120)(58,115,62,119)(59,114,63,118)(60,113,64,117)(65,92,69,96)(66,91,70,95)(67,90,71,94)(68,89,72,93)(97,141,101,137)(98,140,102,144)(99,139,103,143)(100,138,104,142)>;

G:=Group( (25,38,62)(26,39,63)(27,40,64)(28,33,57)(29,34,58)(30,35,59)(31,36,60)(32,37,61)(49,95,137)(50,96,138)(51,89,139)(52,90,140)(53,91,141)(54,92,142)(55,93,143)(56,94,144)(65,123,104)(66,124,97)(67,125,98)(68,126,99)(69,127,100)(70,128,101)(71,121,102)(72,122,103)(73,112,120)(74,105,113)(75,106,114)(76,107,115)(77,108,116)(78,109,117)(79,110,118)(80,111,119), (1,86,134)(2,87,135)(3,88,136)(4,81,129)(5,82,130)(6,83,131)(7,84,132)(8,85,133)(9,43,20)(10,44,21)(11,45,22)(12,46,23)(13,47,24)(14,48,17)(15,41,18)(16,42,19)(25,62,38)(26,63,39)(27,64,40)(28,57,33)(29,58,34)(30,59,35)(31,60,36)(32,61,37)(49,95,137)(50,96,138)(51,89,139)(52,90,140)(53,91,141)(54,92,142)(55,93,143)(56,94,144)(65,104,123)(66,97,124)(67,98,125)(68,99,126)(69,100,127)(70,101,128)(71,102,121)(72,103,122)(73,112,120)(74,105,113)(75,106,114)(76,107,115)(77,108,116)(78,109,117)(79,110,118)(80,111,119), (1,102,118)(2,103,119)(3,104,120)(4,97,113)(5,98,114)(6,99,115)(7,100,116)(8,101,117)(9,35,56)(10,36,49)(11,37,50)(12,38,51)(13,39,52)(14,40,53)(15,33,54)(16,34,55)(17,64,141)(18,57,142)(19,58,143)(20,59,144)(21,60,137)(22,61,138)(23,62,139)(24,63,140)(25,89,46)(26,90,47)(27,91,48)(28,92,41)(29,93,42)(30,94,43)(31,95,44)(32,96,45)(65,112,136)(66,105,129)(67,106,130)(68,107,131)(69,108,132)(70,109,133)(71,110,134)(72,111,135)(73,88,123)(74,81,124)(75,82,125)(76,83,126)(77,84,127)(78,85,128)(79,86,121)(80,87,122), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,20,5,24)(2,19,6,23)(3,18,7,22)(4,17,8,21)(9,82,13,86)(10,81,14,85)(11,88,15,84)(12,87,16,83)(25,111,29,107)(26,110,30,106)(27,109,31,105)(28,108,32,112)(33,77,37,73)(34,76,38,80)(35,75,39,79)(36,74,40,78)(41,132,45,136)(42,131,46,135)(43,130,47,134)(44,129,48,133)(49,124,53,128)(50,123,54,127)(51,122,55,126)(52,121,56,125)(57,116,61,120)(58,115,62,119)(59,114,63,118)(60,113,64,117)(65,92,69,96)(66,91,70,95)(67,90,71,94)(68,89,72,93)(97,141,101,137)(98,140,102,144)(99,139,103,143)(100,138,104,142) );

G=PermutationGroup([[(25,38,62),(26,39,63),(27,40,64),(28,33,57),(29,34,58),(30,35,59),(31,36,60),(32,37,61),(49,95,137),(50,96,138),(51,89,139),(52,90,140),(53,91,141),(54,92,142),(55,93,143),(56,94,144),(65,123,104),(66,124,97),(67,125,98),(68,126,99),(69,127,100),(70,128,101),(71,121,102),(72,122,103),(73,112,120),(74,105,113),(75,106,114),(76,107,115),(77,108,116),(78,109,117),(79,110,118),(80,111,119)], [(1,86,134),(2,87,135),(3,88,136),(4,81,129),(5,82,130),(6,83,131),(7,84,132),(8,85,133),(9,43,20),(10,44,21),(11,45,22),(12,46,23),(13,47,24),(14,48,17),(15,41,18),(16,42,19),(25,62,38),(26,63,39),(27,64,40),(28,57,33),(29,58,34),(30,59,35),(31,60,36),(32,61,37),(49,95,137),(50,96,138),(51,89,139),(52,90,140),(53,91,141),(54,92,142),(55,93,143),(56,94,144),(65,104,123),(66,97,124),(67,98,125),(68,99,126),(69,100,127),(70,101,128),(71,102,121),(72,103,122),(73,112,120),(74,105,113),(75,106,114),(76,107,115),(77,108,116),(78,109,117),(79,110,118),(80,111,119)], [(1,102,118),(2,103,119),(3,104,120),(4,97,113),(5,98,114),(6,99,115),(7,100,116),(8,101,117),(9,35,56),(10,36,49),(11,37,50),(12,38,51),(13,39,52),(14,40,53),(15,33,54),(16,34,55),(17,64,141),(18,57,142),(19,58,143),(20,59,144),(21,60,137),(22,61,138),(23,62,139),(24,63,140),(25,89,46),(26,90,47),(27,91,48),(28,92,41),(29,93,42),(30,94,43),(31,95,44),(32,96,45),(65,112,136),(66,105,129),(67,106,130),(68,107,131),(69,108,132),(70,109,133),(71,110,134),(72,111,135),(73,88,123),(74,81,124),(75,82,125),(76,83,126),(77,84,127),(78,85,128),(79,86,121),(80,87,122)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,20,5,24),(2,19,6,23),(3,18,7,22),(4,17,8,21),(9,82,13,86),(10,81,14,85),(11,88,15,84),(12,87,16,83),(25,111,29,107),(26,110,30,106),(27,109,31,105),(28,108,32,112),(33,77,37,73),(34,76,38,80),(35,75,39,79),(36,74,40,78),(41,132,45,136),(42,131,46,135),(43,130,47,134),(44,129,48,133),(49,124,53,128),(50,123,54,127),(51,122,55,126),(52,121,56,125),(57,116,61,120),(58,115,62,119),(59,114,63,118),(60,113,64,117),(65,92,69,96),(66,91,70,95),(67,90,71,94),(68,89,72,93),(97,141,101,137),(98,140,102,144),(99,139,103,143),(100,138,104,142)]])

53 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F8A8B12A12B12C···12J12K12L12M12N24A24B24C24D24E···24T
order1233333344466666688121212···12121212122424242424···24
size111166662363611666622226···63636363622226···6

53 irreducible representations

dim1112222223366
type++++++-+-
imageC1C2C2S3D4D6Q16D12Dic12He3⋊C2C2×He3⋊C2He35D4He35Q16
kernelHe35Q16C8×He3He34Q8C3×C24C2×He3C3×C12He3C3×C6C32C8C4C2C1
# reps11241428164424

Matrix representation of He35Q16 in GL5(𝔽73)

072000
172000
00100
001640
006508
,
10000
01000
006400
000640
000064
,
10000
01000
001630
000721
000720
,
2368000
518000
007200
000720
000072
,
3465000
2639000
007200
000072
000720

G:=sub<GL(5,GF(73))| [0,1,0,0,0,72,72,0,0,0,0,0,1,1,65,0,0,0,64,0,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,0,64,0,0,0,0,0,64,0,0,0,0,0,64],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,63,72,72,0,0,0,1,0],[23,5,0,0,0,68,18,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[34,26,0,0,0,65,39,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,72,0] >;

He35Q16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_5Q_{16}
% in TeX

G:=Group("He3:5Q16");
// GroupNames label

G:=SmallGroup(432,177);
// by ID

G=gap.SmallGroup(432,177);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,92,254,58,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽