Copied to
clipboard

G = He34C16order 432 = 24·33

2nd semidirect product of He3 and C16 acting via C16/C8=C2

non-abelian, supersoluble, monomial

Aliases: He34C16, (C3×C24).8S3, C323(C3⋊C16), C2.(He34C8), (C4×He3).7C4, (C8×He3).5C2, (C2×He3).4C8, C24.14(C3⋊S3), (C3×C12).7Dic3, C4.2(He33C4), C8.2(He3⋊C2), C6.4(C324C8), C3.2(C24.S3), C12.12(C3⋊Dic3), (C3×C6).4(C3⋊C8), SmallGroup(432,33)

Series: Derived Chief Lower central Upper central

C1C3He3 — He34C16
C1C3C32He3C2×He3C4×He3C8×He3 — He34C16
He3 — He34C16
C1C24

Generators and relations for He34C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, cac-1=ab-1, dad-1=a-1, bc=cb, bd=db, dcd-1=c-1 >

3C3
3C3
3C3
3C3
3C6
3C6
3C6
3C6
3C12
3C12
3C12
3C12
9C16
3C24
3C24
3C24
3C24
3C3⋊C16
3C3⋊C16
3C3⋊C16
3C3⋊C16
9C48
3C3×C3⋊C16
3C3×C3⋊C16
3C3×C3⋊C16
3C3×C3⋊C16

Smallest permutation representation of He34C16
On 144 points
Generators in S144
(17 55 128)(18 113 56)(19 57 114)(20 115 58)(21 59 116)(22 117 60)(23 61 118)(24 119 62)(25 63 120)(26 121 64)(27 49 122)(28 123 50)(29 51 124)(30 125 52)(31 53 126)(32 127 54)(65 83 105)(66 106 84)(67 85 107)(68 108 86)(69 87 109)(70 110 88)(71 89 111)(72 112 90)(73 91 97)(74 98 92)(75 93 99)(76 100 94)(77 95 101)(78 102 96)(79 81 103)(80 104 82)
(1 45 131)(2 46 132)(3 47 133)(4 48 134)(5 33 135)(6 34 136)(7 35 137)(8 36 138)(9 37 139)(10 38 140)(11 39 141)(12 40 142)(13 41 143)(14 42 144)(15 43 129)(16 44 130)(17 55 128)(18 56 113)(19 57 114)(20 58 115)(21 59 116)(22 60 117)(23 61 118)(24 62 119)(25 63 120)(26 64 121)(27 49 122)(28 50 123)(29 51 124)(30 52 125)(31 53 126)(32 54 127)(65 105 83)(66 106 84)(67 107 85)(68 108 86)(69 109 87)(70 110 88)(71 111 89)(72 112 90)(73 97 91)(74 98 92)(75 99 93)(76 100 94)(77 101 95)(78 102 96)(79 103 81)(80 104 82)
(1 119 96)(2 81 120)(3 121 82)(4 83 122)(5 123 84)(6 85 124)(7 125 86)(8 87 126)(9 127 88)(10 89 128)(11 113 90)(12 91 114)(13 115 92)(14 93 116)(15 117 94)(16 95 118)(17 38 71)(18 72 39)(19 40 73)(20 74 41)(21 42 75)(22 76 43)(23 44 77)(24 78 45)(25 46 79)(26 80 47)(27 48 65)(28 66 33)(29 34 67)(30 68 35)(31 36 69)(32 70 37)(49 134 105)(50 106 135)(51 136 107)(52 108 137)(53 138 109)(54 110 139)(55 140 111)(56 112 141)(57 142 97)(58 98 143)(59 144 99)(60 100 129)(61 130 101)(62 102 131)(63 132 103)(64 104 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (17,55,128)(18,113,56)(19,57,114)(20,115,58)(21,59,116)(22,117,60)(23,61,118)(24,119,62)(25,63,120)(26,121,64)(27,49,122)(28,123,50)(29,51,124)(30,125,52)(31,53,126)(32,127,54)(65,83,105)(66,106,84)(67,85,107)(68,108,86)(69,87,109)(70,110,88)(71,89,111)(72,112,90)(73,91,97)(74,98,92)(75,93,99)(76,100,94)(77,95,101)(78,102,96)(79,81,103)(80,104,82), (1,45,131)(2,46,132)(3,47,133)(4,48,134)(5,33,135)(6,34,136)(7,35,137)(8,36,138)(9,37,139)(10,38,140)(11,39,141)(12,40,142)(13,41,143)(14,42,144)(15,43,129)(16,44,130)(17,55,128)(18,56,113)(19,57,114)(20,58,115)(21,59,116)(22,60,117)(23,61,118)(24,62,119)(25,63,120)(26,64,121)(27,49,122)(28,50,123)(29,51,124)(30,52,125)(31,53,126)(32,54,127)(65,105,83)(66,106,84)(67,107,85)(68,108,86)(69,109,87)(70,110,88)(71,111,89)(72,112,90)(73,97,91)(74,98,92)(75,99,93)(76,100,94)(77,101,95)(78,102,96)(79,103,81)(80,104,82), (1,119,96)(2,81,120)(3,121,82)(4,83,122)(5,123,84)(6,85,124)(7,125,86)(8,87,126)(9,127,88)(10,89,128)(11,113,90)(12,91,114)(13,115,92)(14,93,116)(15,117,94)(16,95,118)(17,38,71)(18,72,39)(19,40,73)(20,74,41)(21,42,75)(22,76,43)(23,44,77)(24,78,45)(25,46,79)(26,80,47)(27,48,65)(28,66,33)(29,34,67)(30,68,35)(31,36,69)(32,70,37)(49,134,105)(50,106,135)(51,136,107)(52,108,137)(53,138,109)(54,110,139)(55,140,111)(56,112,141)(57,142,97)(58,98,143)(59,144,99)(60,100,129)(61,130,101)(62,102,131)(63,132,103)(64,104,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (17,55,128)(18,113,56)(19,57,114)(20,115,58)(21,59,116)(22,117,60)(23,61,118)(24,119,62)(25,63,120)(26,121,64)(27,49,122)(28,123,50)(29,51,124)(30,125,52)(31,53,126)(32,127,54)(65,83,105)(66,106,84)(67,85,107)(68,108,86)(69,87,109)(70,110,88)(71,89,111)(72,112,90)(73,91,97)(74,98,92)(75,93,99)(76,100,94)(77,95,101)(78,102,96)(79,81,103)(80,104,82), (1,45,131)(2,46,132)(3,47,133)(4,48,134)(5,33,135)(6,34,136)(7,35,137)(8,36,138)(9,37,139)(10,38,140)(11,39,141)(12,40,142)(13,41,143)(14,42,144)(15,43,129)(16,44,130)(17,55,128)(18,56,113)(19,57,114)(20,58,115)(21,59,116)(22,60,117)(23,61,118)(24,62,119)(25,63,120)(26,64,121)(27,49,122)(28,50,123)(29,51,124)(30,52,125)(31,53,126)(32,54,127)(65,105,83)(66,106,84)(67,107,85)(68,108,86)(69,109,87)(70,110,88)(71,111,89)(72,112,90)(73,97,91)(74,98,92)(75,99,93)(76,100,94)(77,101,95)(78,102,96)(79,103,81)(80,104,82), (1,119,96)(2,81,120)(3,121,82)(4,83,122)(5,123,84)(6,85,124)(7,125,86)(8,87,126)(9,127,88)(10,89,128)(11,113,90)(12,91,114)(13,115,92)(14,93,116)(15,117,94)(16,95,118)(17,38,71)(18,72,39)(19,40,73)(20,74,41)(21,42,75)(22,76,43)(23,44,77)(24,78,45)(25,46,79)(26,80,47)(27,48,65)(28,66,33)(29,34,67)(30,68,35)(31,36,69)(32,70,37)(49,134,105)(50,106,135)(51,136,107)(52,108,137)(53,138,109)(54,110,139)(55,140,111)(56,112,141)(57,142,97)(58,98,143)(59,144,99)(60,100,129)(61,130,101)(62,102,131)(63,132,103)(64,104,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(17,55,128),(18,113,56),(19,57,114),(20,115,58),(21,59,116),(22,117,60),(23,61,118),(24,119,62),(25,63,120),(26,121,64),(27,49,122),(28,123,50),(29,51,124),(30,125,52),(31,53,126),(32,127,54),(65,83,105),(66,106,84),(67,85,107),(68,108,86),(69,87,109),(70,110,88),(71,89,111),(72,112,90),(73,91,97),(74,98,92),(75,93,99),(76,100,94),(77,95,101),(78,102,96),(79,81,103),(80,104,82)], [(1,45,131),(2,46,132),(3,47,133),(4,48,134),(5,33,135),(6,34,136),(7,35,137),(8,36,138),(9,37,139),(10,38,140),(11,39,141),(12,40,142),(13,41,143),(14,42,144),(15,43,129),(16,44,130),(17,55,128),(18,56,113),(19,57,114),(20,58,115),(21,59,116),(22,60,117),(23,61,118),(24,62,119),(25,63,120),(26,64,121),(27,49,122),(28,50,123),(29,51,124),(30,52,125),(31,53,126),(32,54,127),(65,105,83),(66,106,84),(67,107,85),(68,108,86),(69,109,87),(70,110,88),(71,111,89),(72,112,90),(73,97,91),(74,98,92),(75,99,93),(76,100,94),(77,101,95),(78,102,96),(79,103,81),(80,104,82)], [(1,119,96),(2,81,120),(3,121,82),(4,83,122),(5,123,84),(6,85,124),(7,125,86),(8,87,126),(9,127,88),(10,89,128),(11,113,90),(12,91,114),(13,115,92),(14,93,116),(15,117,94),(16,95,118),(17,38,71),(18,72,39),(19,40,73),(20,74,41),(21,42,75),(22,76,43),(23,44,77),(24,78,45),(25,46,79),(26,80,47),(27,48,65),(28,66,33),(29,34,67),(30,68,35),(31,36,69),(32,70,37),(49,134,105),(50,106,135),(51,136,107),(52,108,137),(53,138,109),(54,110,139),(55,140,111),(56,112,141),(57,142,97),(58,98,143),(59,144,99),(60,100,129),(61,130,101),(62,102,131),(63,132,103),(64,104,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

80 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B6A6B6C6D6E6F8A8B8C8D12A12B12C12D12E···12L16A···16H24A···24H24I···24X48A···48P
order123333334466666688881212121212···1216···1624···2424···2448···48
size1111666611116666111111116···69···91···16···69···9

80 irreducible representations

dim1111122223333
type+++-
imageC1C2C4C8C16S3Dic3C3⋊C8C3⋊C16He3⋊C2He33C4He34C8He34C16
kernelHe34C16C8×He3C4×He3C2×He3He3C3×C24C3×C12C3×C6C32C8C4C2C1
# reps112484481644816

Matrix representation of He34C16 in GL3(𝔽97) generated by

100
0350
0061
,
3500
0350
0035
,
010
001
100
,
1200
0012
0120
G:=sub<GL(3,GF(97))| [1,0,0,0,35,0,0,0,61],[35,0,0,0,35,0,0,0,35],[0,0,1,1,0,0,0,1,0],[12,0,0,0,0,12,0,12,0] >;

He34C16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_4C_{16}
% in TeX

G:=Group("He3:4C16");
// GroupNames label

G:=SmallGroup(432,33);
// by ID

G=gap.SmallGroup(432,33);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,14,36,58,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of He34C16 in TeX

׿
×
𝔽