extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1Dic18 = Dic9⋊Dic3 | φ: Dic18/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.1Dic18 | 432,88 |
C6.2Dic18 = C18.Dic6 | φ: Dic18/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.2Dic18 | 432,89 |
C6.3Dic18 = Dic3⋊Dic9 | φ: Dic18/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.3Dic18 | 432,90 |
C6.4Dic18 = Dic27⋊C4 | φ: Dic18/C36 → C2 ⊆ Aut C6 | 432 | | C6.4Dic18 | 432,12 |
C6.5Dic18 = C4⋊Dic27 | φ: Dic18/C36 → C2 ⊆ Aut C6 | 432 | | C6.5Dic18 | 432,13 |
C6.6Dic18 = C2×Dic54 | φ: Dic18/C36 → C2 ⊆ Aut C6 | 432 | | C6.6Dic18 | 432,43 |
C6.7Dic18 = C6.Dic18 | φ: Dic18/C36 → C2 ⊆ Aut C6 | 432 | | C6.7Dic18 | 432,181 |
C6.8Dic18 = C36⋊Dic3 | φ: Dic18/C36 → C2 ⊆ Aut C6 | 432 | | C6.8Dic18 | 432,182 |
C6.9Dic18 = C3×Dic9⋊C4 | central extension (φ=1) | 144 | | C6.9Dic18 | 432,129 |
C6.10Dic18 = C3×C4⋊Dic9 | central extension (φ=1) | 144 | | C6.10Dic18 | 432,130 |