Extensions 1→N→G→Q→1 with N=C6 and Q=Dic18

Direct product G=N×Q with N=C6 and Q=Dic18
dρLabelID
C6×Dic18144C6xDic18432,340

Semidirect products G=N:Q with N=C6 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C61Dic18 = C2×C9⋊Dic6φ: Dic18/Dic9C2 ⊆ Aut C6144C6:1Dic18432,303
C62Dic18 = C2×C12.D9φ: Dic18/C36C2 ⊆ Aut C6432C6:2Dic18432,380

Non-split extensions G=N.Q with N=C6 and Q=Dic18
extensionφ:Q→Aut NdρLabelID
C6.1Dic18 = Dic9⋊Dic3φ: Dic18/Dic9C2 ⊆ Aut C6144C6.1Dic18432,88
C6.2Dic18 = C18.Dic6φ: Dic18/Dic9C2 ⊆ Aut C6144C6.2Dic18432,89
C6.3Dic18 = Dic3⋊Dic9φ: Dic18/Dic9C2 ⊆ Aut C6144C6.3Dic18432,90
C6.4Dic18 = Dic27⋊C4φ: Dic18/C36C2 ⊆ Aut C6432C6.4Dic18432,12
C6.5Dic18 = C4⋊Dic27φ: Dic18/C36C2 ⊆ Aut C6432C6.5Dic18432,13
C6.6Dic18 = C2×Dic54φ: Dic18/C36C2 ⊆ Aut C6432C6.6Dic18432,43
C6.7Dic18 = C6.Dic18φ: Dic18/C36C2 ⊆ Aut C6432C6.7Dic18432,181
C6.8Dic18 = C36⋊Dic3φ: Dic18/C36C2 ⊆ Aut C6432C6.8Dic18432,182
C6.9Dic18 = C3×Dic9⋊C4central extension (φ=1)144C6.9Dic18432,129
C6.10Dic18 = C3×C4⋊Dic9central extension (φ=1)144C6.10Dic18432,130

׿
×
𝔽