Copied to
clipboard

G = Dic3⋊Dic9order 432 = 24·33

The semidirect product of Dic3 and Dic9 acting via Dic9/C18=C2

metabelian, supersoluble, monomial

Aliases: Dic3⋊Dic9, C6.16D36, C18.3Dic6, C6.3Dic18, C62.56D6, (C3×C18).3Q8, C18.19(C4×S3), C31(C4⋊Dic9), (C9×Dic3)⋊1C4, (C2×C18).11D6, (C2×C6).11D18, (C3×C6).33D12, (C3×C18).15D4, C2.4(S3×Dic9), C6.4(C2×Dic9), C22.7(S3×D9), C92(Dic3⋊C4), C18.5(C3⋊D4), (C6×C18).5C22, (C2×Dic9).3S3, (C6×Dic9).4C2, (C6×Dic3).8S3, (C2×Dic3).3D9, C6.25(S3×Dic3), (C3×C6).14Dic6, C6.5(C3⋊D12), C2.1(C3⋊D36), (Dic3×C18).5C2, C6.3(C322Q8), (C3×Dic3).2Dic3, C2.3(C9⋊Dic6), C32.2(C4⋊Dic3), C3.2(Dic3⋊Dic3), (C3×C9)⋊3(C4⋊C4), (C2×C6).17S32, (C3×C18).10(C2×C4), (C2×C9⋊Dic3).4C2, (C3×C6).32(C2×Dic3), SmallGroup(432,90)

Series: Derived Chief Lower central Upper central

C1C3×C18 — Dic3⋊Dic9
C1C3C32C3×C9C3×C18C6×C18Dic3×C18 — Dic3⋊Dic9
C3×C9C3×C18 — Dic3⋊Dic9
C1C22

Generators and relations for Dic3⋊Dic9
 G = < a,b,c,d | a6=c18=1, b2=a3, d2=c9, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 444 in 94 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C9, C9, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C18, C18, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C3×C9, Dic9, C36, C2×C18, C2×C18, C3×Dic3, C3×Dic3, C3⋊Dic3, C62, Dic3⋊C4, C4⋊Dic3, C3×C18, C2×Dic9, C2×Dic9, C2×C36, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C3×Dic9, C9×Dic3, C9⋊Dic3, C6×C18, C4⋊Dic9, Dic3⋊Dic3, C6×Dic9, Dic3×C18, C2×C9⋊Dic3, Dic3⋊Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, D9, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, Dic9, D18, S32, Dic3⋊C4, C4⋊Dic3, Dic18, D36, C2×Dic9, S3×Dic3, C3⋊D12, C322Q8, S3×D9, C4⋊Dic9, Dic3⋊Dic3, C9⋊Dic6, C3⋊D36, S3×Dic9, Dic3⋊Dic9

Smallest permutation representation of Dic3⋊Dic9
On 144 points
Generators in S144
(1 48 7 54 13 42)(2 49 8 37 14 43)(3 50 9 38 15 44)(4 51 10 39 16 45)(5 52 11 40 17 46)(6 53 12 41 18 47)(19 56 31 68 25 62)(20 57 32 69 26 63)(21 58 33 70 27 64)(22 59 34 71 28 65)(23 60 35 72 29 66)(24 61 36 55 30 67)(73 105 85 99 79 93)(74 106 86 100 80 94)(75 107 87 101 81 95)(76 108 88 102 82 96)(77 91 89 103 83 97)(78 92 90 104 84 98)(109 133 115 139 121 127)(110 134 116 140 122 128)(111 135 117 141 123 129)(112 136 118 142 124 130)(113 137 119 143 125 131)(114 138 120 144 126 132)
(1 80 54 106)(2 81 37 107)(3 82 38 108)(4 83 39 91)(5 84 40 92)(6 85 41 93)(7 86 42 94)(8 87 43 95)(9 88 44 96)(10 89 45 97)(11 90 46 98)(12 73 47 99)(13 74 48 100)(14 75 49 101)(15 76 50 102)(16 77 51 103)(17 78 52 104)(18 79 53 105)(19 133 68 121)(20 134 69 122)(21 135 70 123)(22 136 71 124)(23 137 72 125)(24 138 55 126)(25 139 56 109)(26 140 57 110)(27 141 58 111)(28 142 59 112)(29 143 60 113)(30 144 61 114)(31 127 62 115)(32 128 63 116)(33 129 64 117)(34 130 65 118)(35 131 66 119)(36 132 67 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 64 10 55)(2 63 11 72)(3 62 12 71)(4 61 13 70)(5 60 14 69)(6 59 15 68)(7 58 16 67)(8 57 17 66)(9 56 18 65)(19 41 28 50)(20 40 29 49)(21 39 30 48)(22 38 31 47)(23 37 32 46)(24 54 33 45)(25 53 34 44)(26 52 35 43)(27 51 36 42)(73 136 82 127)(74 135 83 144)(75 134 84 143)(76 133 85 142)(77 132 86 141)(78 131 87 140)(79 130 88 139)(80 129 89 138)(81 128 90 137)(91 114 100 123)(92 113 101 122)(93 112 102 121)(94 111 103 120)(95 110 104 119)(96 109 105 118)(97 126 106 117)(98 125 107 116)(99 124 108 115)

G:=sub<Sym(144)| (1,48,7,54,13,42)(2,49,8,37,14,43)(3,50,9,38,15,44)(4,51,10,39,16,45)(5,52,11,40,17,46)(6,53,12,41,18,47)(19,56,31,68,25,62)(20,57,32,69,26,63)(21,58,33,70,27,64)(22,59,34,71,28,65)(23,60,35,72,29,66)(24,61,36,55,30,67)(73,105,85,99,79,93)(74,106,86,100,80,94)(75,107,87,101,81,95)(76,108,88,102,82,96)(77,91,89,103,83,97)(78,92,90,104,84,98)(109,133,115,139,121,127)(110,134,116,140,122,128)(111,135,117,141,123,129)(112,136,118,142,124,130)(113,137,119,143,125,131)(114,138,120,144,126,132), (1,80,54,106)(2,81,37,107)(3,82,38,108)(4,83,39,91)(5,84,40,92)(6,85,41,93)(7,86,42,94)(8,87,43,95)(9,88,44,96)(10,89,45,97)(11,90,46,98)(12,73,47,99)(13,74,48,100)(14,75,49,101)(15,76,50,102)(16,77,51,103)(17,78,52,104)(18,79,53,105)(19,133,68,121)(20,134,69,122)(21,135,70,123)(22,136,71,124)(23,137,72,125)(24,138,55,126)(25,139,56,109)(26,140,57,110)(27,141,58,111)(28,142,59,112)(29,143,60,113)(30,144,61,114)(31,127,62,115)(32,128,63,116)(33,129,64,117)(34,130,65,118)(35,131,66,119)(36,132,67,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,64,10,55)(2,63,11,72)(3,62,12,71)(4,61,13,70)(5,60,14,69)(6,59,15,68)(7,58,16,67)(8,57,17,66)(9,56,18,65)(19,41,28,50)(20,40,29,49)(21,39,30,48)(22,38,31,47)(23,37,32,46)(24,54,33,45)(25,53,34,44)(26,52,35,43)(27,51,36,42)(73,136,82,127)(74,135,83,144)(75,134,84,143)(76,133,85,142)(77,132,86,141)(78,131,87,140)(79,130,88,139)(80,129,89,138)(81,128,90,137)(91,114,100,123)(92,113,101,122)(93,112,102,121)(94,111,103,120)(95,110,104,119)(96,109,105,118)(97,126,106,117)(98,125,107,116)(99,124,108,115)>;

G:=Group( (1,48,7,54,13,42)(2,49,8,37,14,43)(3,50,9,38,15,44)(4,51,10,39,16,45)(5,52,11,40,17,46)(6,53,12,41,18,47)(19,56,31,68,25,62)(20,57,32,69,26,63)(21,58,33,70,27,64)(22,59,34,71,28,65)(23,60,35,72,29,66)(24,61,36,55,30,67)(73,105,85,99,79,93)(74,106,86,100,80,94)(75,107,87,101,81,95)(76,108,88,102,82,96)(77,91,89,103,83,97)(78,92,90,104,84,98)(109,133,115,139,121,127)(110,134,116,140,122,128)(111,135,117,141,123,129)(112,136,118,142,124,130)(113,137,119,143,125,131)(114,138,120,144,126,132), (1,80,54,106)(2,81,37,107)(3,82,38,108)(4,83,39,91)(5,84,40,92)(6,85,41,93)(7,86,42,94)(8,87,43,95)(9,88,44,96)(10,89,45,97)(11,90,46,98)(12,73,47,99)(13,74,48,100)(14,75,49,101)(15,76,50,102)(16,77,51,103)(17,78,52,104)(18,79,53,105)(19,133,68,121)(20,134,69,122)(21,135,70,123)(22,136,71,124)(23,137,72,125)(24,138,55,126)(25,139,56,109)(26,140,57,110)(27,141,58,111)(28,142,59,112)(29,143,60,113)(30,144,61,114)(31,127,62,115)(32,128,63,116)(33,129,64,117)(34,130,65,118)(35,131,66,119)(36,132,67,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,64,10,55)(2,63,11,72)(3,62,12,71)(4,61,13,70)(5,60,14,69)(6,59,15,68)(7,58,16,67)(8,57,17,66)(9,56,18,65)(19,41,28,50)(20,40,29,49)(21,39,30,48)(22,38,31,47)(23,37,32,46)(24,54,33,45)(25,53,34,44)(26,52,35,43)(27,51,36,42)(73,136,82,127)(74,135,83,144)(75,134,84,143)(76,133,85,142)(77,132,86,141)(78,131,87,140)(79,130,88,139)(80,129,89,138)(81,128,90,137)(91,114,100,123)(92,113,101,122)(93,112,102,121)(94,111,103,120)(95,110,104,119)(96,109,105,118)(97,126,106,117)(98,125,107,116)(99,124,108,115) );

G=PermutationGroup([[(1,48,7,54,13,42),(2,49,8,37,14,43),(3,50,9,38,15,44),(4,51,10,39,16,45),(5,52,11,40,17,46),(6,53,12,41,18,47),(19,56,31,68,25,62),(20,57,32,69,26,63),(21,58,33,70,27,64),(22,59,34,71,28,65),(23,60,35,72,29,66),(24,61,36,55,30,67),(73,105,85,99,79,93),(74,106,86,100,80,94),(75,107,87,101,81,95),(76,108,88,102,82,96),(77,91,89,103,83,97),(78,92,90,104,84,98),(109,133,115,139,121,127),(110,134,116,140,122,128),(111,135,117,141,123,129),(112,136,118,142,124,130),(113,137,119,143,125,131),(114,138,120,144,126,132)], [(1,80,54,106),(2,81,37,107),(3,82,38,108),(4,83,39,91),(5,84,40,92),(6,85,41,93),(7,86,42,94),(8,87,43,95),(9,88,44,96),(10,89,45,97),(11,90,46,98),(12,73,47,99),(13,74,48,100),(14,75,49,101),(15,76,50,102),(16,77,51,103),(17,78,52,104),(18,79,53,105),(19,133,68,121),(20,134,69,122),(21,135,70,123),(22,136,71,124),(23,137,72,125),(24,138,55,126),(25,139,56,109),(26,140,57,110),(27,141,58,111),(28,142,59,112),(29,143,60,113),(30,144,61,114),(31,127,62,115),(32,128,63,116),(33,129,64,117),(34,130,65,118),(35,131,66,119),(36,132,67,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,64,10,55),(2,63,11,72),(3,62,12,71),(4,61,13,70),(5,60,14,69),(6,59,15,68),(7,58,16,67),(8,57,17,66),(9,56,18,65),(19,41,28,50),(20,40,29,49),(21,39,30,48),(22,38,31,47),(23,37,32,46),(24,54,33,45),(25,53,34,44),(26,52,35,43),(27,51,36,42),(73,136,82,127),(74,135,83,144),(75,134,84,143),(76,133,85,142),(77,132,86,141),(78,131,87,140),(79,130,88,139),(80,129,89,138),(81,128,90,137),(91,114,100,123),(92,113,101,122),(93,112,102,121),(94,111,103,120),(95,110,104,119),(96,109,105,118),(97,126,106,117),(98,125,107,116),(99,124,108,115)]])

66 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A···6F6G6H6I9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A···18I18J···18R36A···36L
order12223334444446···6666999999121212121212121218···1818···1836···36
size111122466181854542···24442224446666181818182···24···46···6

66 irreducible representations

dim111112222222222222222244444444
type+++++++-+-++--+-+-++-+-+-+-
imageC1C2C2C2C4S3S3D4Q8D6Dic3D6D9Dic6C4×S3C3⋊D4Dic6D12Dic9D18Dic18D36S32S3×Dic3C3⋊D12C322Q8S3×D9C9⋊Dic6C3⋊D36S3×Dic9
kernelDic3⋊Dic9C6×Dic9Dic3×C18C2×C9⋊Dic3C9×Dic3C2×Dic9C6×Dic3C3×C18C3×C18C2×C18C3×Dic3C62C2×Dic3C18C18C18C3×C6C3×C6Dic3C2×C6C6C6C2×C6C6C6C6C22C2C2C2
# reps111141111121322222636611113333

Matrix representation of Dic3⋊Dic9 in GL6(𝔽37)

3600000
0360000
0003600
0013600
000010
000001
,
5270000
10320000
000100
001000
000010
000001
,
3610000
3600000
001000
000100
00003126
00001120
,
31170000
1160000
0036000
0003600
0000316
000006

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,10,0,0,0,0,27,32,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,11,0,0,0,0,26,20],[31,11,0,0,0,0,17,6,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,31,0,0,0,0,0,6,6] >;

Dic3⋊Dic9 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes {\rm Dic}_9
% in TeX

G:=Group("Dic3:Dic9");
// GroupNames label

G:=SmallGroup(432,90);
// by ID

G=gap.SmallGroup(432,90);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,36,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^18=1,b^2=a^3,d^2=c^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽