Copied to
clipboard

G = Dic9⋊Dic3order 432 = 24·33

The semidirect product of Dic9 and Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial

Aliases: Dic9⋊Dic3, C18.16D12, C6.1Dic18, C18.1Dic6, C62.54D6, (C2×C18).9D6, C6.19(C4×D9), (C2×C6).9D18, (C3×C18).1Q8, C91(C4⋊Dic3), (C3×Dic9)⋊2C4, (C3×C18).13D4, C6.5(C9⋊D4), C2.4(Dic3×D9), C6.3(S3×Dic3), C22.5(S3×D9), C31(Dic9⋊C4), (C6×C18).3C22, (C2×Dic9).1S3, (C2×Dic3).1D9, (C6×Dic3).1S3, (C6×Dic9).2C2, (C3×C6).12Dic6, C18.4(C2×Dic3), C2.1(C9⋊D12), (Dic3×C18).1C2, C6.1(C322Q8), C6.18(C3⋊D12), C2.1(C9⋊Dic6), C3.1(Dic3⋊Dic3), C32.2(Dic3⋊C4), (C3×C9)⋊1(C4⋊C4), (C2×C6).15S32, (C3×C18).8(C2×C4), (C3×C6).38(C4×S3), (C2×C9⋊Dic3).2C2, (C3×C6).49(C3⋊D4), SmallGroup(432,88)

Series: Derived Chief Lower central Upper central

C1C3×C18 — Dic9⋊Dic3
C1C3C9C3×C9C3×C18C6×C18C6×Dic9 — Dic9⋊Dic3
C3×C9C3×C18 — Dic9⋊Dic3
C1C22

Generators and relations for Dic9⋊Dic3
 G = < a,b,c,d | a18=c6=1, b2=a9, d2=c3, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd-1=a9b, dcd-1=c-1 >

Subgroups: 444 in 94 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C9, C9, C32, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C18, C18, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C3×C9, Dic9, Dic9, C36, C2×C18, C2×C18, C3×Dic3, C3⋊Dic3, C62, Dic3⋊C4, C4⋊Dic3, C3×C18, C2×Dic9, C2×Dic9, C2×C36, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C3×Dic9, C9×Dic3, C9⋊Dic3, C6×C18, Dic9⋊C4, Dic3⋊Dic3, C6×Dic9, Dic3×C18, C2×C9⋊Dic3, Dic9⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, D9, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, D18, S32, Dic3⋊C4, C4⋊Dic3, Dic18, C4×D9, C9⋊D4, S3×Dic3, C3⋊D12, C322Q8, S3×D9, Dic9⋊C4, Dic3⋊Dic3, C9⋊Dic6, Dic3×D9, C9⋊D12, Dic9⋊Dic3

Smallest permutation representation of Dic9⋊Dic3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 100 10 91)(2 99 11 108)(3 98 12 107)(4 97 13 106)(5 96 14 105)(6 95 15 104)(7 94 16 103)(8 93 17 102)(9 92 18 101)(19 88 28 79)(20 87 29 78)(21 86 30 77)(22 85 31 76)(23 84 32 75)(24 83 33 74)(25 82 34 73)(26 81 35 90)(27 80 36 89)(37 130 46 139)(38 129 47 138)(39 128 48 137)(40 127 49 136)(41 144 50 135)(42 143 51 134)(43 142 52 133)(44 141 53 132)(45 140 54 131)(55 114 64 123)(56 113 65 122)(57 112 66 121)(58 111 67 120)(59 110 68 119)(60 109 69 118)(61 126 70 117)(62 125 71 116)(63 124 72 115)
(1 29 7 35 13 23)(2 30 8 36 14 24)(3 31 9 19 15 25)(4 32 10 20 16 26)(5 33 11 21 17 27)(6 34 12 22 18 28)(37 68 49 62 43 56)(38 69 50 63 44 57)(39 70 51 64 45 58)(40 71 52 65 46 59)(41 72 53 66 47 60)(42 55 54 67 48 61)(73 107 85 101 79 95)(74 108 86 102 80 96)(75 91 87 103 81 97)(76 92 88 104 82 98)(77 93 89 105 83 99)(78 94 90 106 84 100)(109 144 115 132 121 138)(110 127 116 133 122 139)(111 128 117 134 123 140)(112 129 118 135 124 141)(113 130 119 136 125 142)(114 131 120 137 126 143)
(1 69 35 44)(2 70 36 45)(3 71 19 46)(4 72 20 47)(5 55 21 48)(6 56 22 49)(7 57 23 50)(8 58 24 51)(9 59 25 52)(10 60 26 53)(11 61 27 54)(12 62 28 37)(13 63 29 38)(14 64 30 39)(15 65 31 40)(16 66 32 41)(17 67 33 42)(18 68 34 43)(73 133 101 110)(74 134 102 111)(75 135 103 112)(76 136 104 113)(77 137 105 114)(78 138 106 115)(79 139 107 116)(80 140 108 117)(81 141 91 118)(82 142 92 119)(83 143 93 120)(84 144 94 121)(85 127 95 122)(86 128 96 123)(87 129 97 124)(88 130 98 125)(89 131 99 126)(90 132 100 109)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,100,10,91)(2,99,11,108)(3,98,12,107)(4,97,13,106)(5,96,14,105)(6,95,15,104)(7,94,16,103)(8,93,17,102)(9,92,18,101)(19,88,28,79)(20,87,29,78)(21,86,30,77)(22,85,31,76)(23,84,32,75)(24,83,33,74)(25,82,34,73)(26,81,35,90)(27,80,36,89)(37,130,46,139)(38,129,47,138)(39,128,48,137)(40,127,49,136)(41,144,50,135)(42,143,51,134)(43,142,52,133)(44,141,53,132)(45,140,54,131)(55,114,64,123)(56,113,65,122)(57,112,66,121)(58,111,67,120)(59,110,68,119)(60,109,69,118)(61,126,70,117)(62,125,71,116)(63,124,72,115), (1,29,7,35,13,23)(2,30,8,36,14,24)(3,31,9,19,15,25)(4,32,10,20,16,26)(5,33,11,21,17,27)(6,34,12,22,18,28)(37,68,49,62,43,56)(38,69,50,63,44,57)(39,70,51,64,45,58)(40,71,52,65,46,59)(41,72,53,66,47,60)(42,55,54,67,48,61)(73,107,85,101,79,95)(74,108,86,102,80,96)(75,91,87,103,81,97)(76,92,88,104,82,98)(77,93,89,105,83,99)(78,94,90,106,84,100)(109,144,115,132,121,138)(110,127,116,133,122,139)(111,128,117,134,123,140)(112,129,118,135,124,141)(113,130,119,136,125,142)(114,131,120,137,126,143), (1,69,35,44)(2,70,36,45)(3,71,19,46)(4,72,20,47)(5,55,21,48)(6,56,22,49)(7,57,23,50)(8,58,24,51)(9,59,25,52)(10,60,26,53)(11,61,27,54)(12,62,28,37)(13,63,29,38)(14,64,30,39)(15,65,31,40)(16,66,32,41)(17,67,33,42)(18,68,34,43)(73,133,101,110)(74,134,102,111)(75,135,103,112)(76,136,104,113)(77,137,105,114)(78,138,106,115)(79,139,107,116)(80,140,108,117)(81,141,91,118)(82,142,92,119)(83,143,93,120)(84,144,94,121)(85,127,95,122)(86,128,96,123)(87,129,97,124)(88,130,98,125)(89,131,99,126)(90,132,100,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,100,10,91)(2,99,11,108)(3,98,12,107)(4,97,13,106)(5,96,14,105)(6,95,15,104)(7,94,16,103)(8,93,17,102)(9,92,18,101)(19,88,28,79)(20,87,29,78)(21,86,30,77)(22,85,31,76)(23,84,32,75)(24,83,33,74)(25,82,34,73)(26,81,35,90)(27,80,36,89)(37,130,46,139)(38,129,47,138)(39,128,48,137)(40,127,49,136)(41,144,50,135)(42,143,51,134)(43,142,52,133)(44,141,53,132)(45,140,54,131)(55,114,64,123)(56,113,65,122)(57,112,66,121)(58,111,67,120)(59,110,68,119)(60,109,69,118)(61,126,70,117)(62,125,71,116)(63,124,72,115), (1,29,7,35,13,23)(2,30,8,36,14,24)(3,31,9,19,15,25)(4,32,10,20,16,26)(5,33,11,21,17,27)(6,34,12,22,18,28)(37,68,49,62,43,56)(38,69,50,63,44,57)(39,70,51,64,45,58)(40,71,52,65,46,59)(41,72,53,66,47,60)(42,55,54,67,48,61)(73,107,85,101,79,95)(74,108,86,102,80,96)(75,91,87,103,81,97)(76,92,88,104,82,98)(77,93,89,105,83,99)(78,94,90,106,84,100)(109,144,115,132,121,138)(110,127,116,133,122,139)(111,128,117,134,123,140)(112,129,118,135,124,141)(113,130,119,136,125,142)(114,131,120,137,126,143), (1,69,35,44)(2,70,36,45)(3,71,19,46)(4,72,20,47)(5,55,21,48)(6,56,22,49)(7,57,23,50)(8,58,24,51)(9,59,25,52)(10,60,26,53)(11,61,27,54)(12,62,28,37)(13,63,29,38)(14,64,30,39)(15,65,31,40)(16,66,32,41)(17,67,33,42)(18,68,34,43)(73,133,101,110)(74,134,102,111)(75,135,103,112)(76,136,104,113)(77,137,105,114)(78,138,106,115)(79,139,107,116)(80,140,108,117)(81,141,91,118)(82,142,92,119)(83,143,93,120)(84,144,94,121)(85,127,95,122)(86,128,96,123)(87,129,97,124)(88,130,98,125)(89,131,99,126)(90,132,100,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,100,10,91),(2,99,11,108),(3,98,12,107),(4,97,13,106),(5,96,14,105),(6,95,15,104),(7,94,16,103),(8,93,17,102),(9,92,18,101),(19,88,28,79),(20,87,29,78),(21,86,30,77),(22,85,31,76),(23,84,32,75),(24,83,33,74),(25,82,34,73),(26,81,35,90),(27,80,36,89),(37,130,46,139),(38,129,47,138),(39,128,48,137),(40,127,49,136),(41,144,50,135),(42,143,51,134),(43,142,52,133),(44,141,53,132),(45,140,54,131),(55,114,64,123),(56,113,65,122),(57,112,66,121),(58,111,67,120),(59,110,68,119),(60,109,69,118),(61,126,70,117),(62,125,71,116),(63,124,72,115)], [(1,29,7,35,13,23),(2,30,8,36,14,24),(3,31,9,19,15,25),(4,32,10,20,16,26),(5,33,11,21,17,27),(6,34,12,22,18,28),(37,68,49,62,43,56),(38,69,50,63,44,57),(39,70,51,64,45,58),(40,71,52,65,46,59),(41,72,53,66,47,60),(42,55,54,67,48,61),(73,107,85,101,79,95),(74,108,86,102,80,96),(75,91,87,103,81,97),(76,92,88,104,82,98),(77,93,89,105,83,99),(78,94,90,106,84,100),(109,144,115,132,121,138),(110,127,116,133,122,139),(111,128,117,134,123,140),(112,129,118,135,124,141),(113,130,119,136,125,142),(114,131,120,137,126,143)], [(1,69,35,44),(2,70,36,45),(3,71,19,46),(4,72,20,47),(5,55,21,48),(6,56,22,49),(7,57,23,50),(8,58,24,51),(9,59,25,52),(10,60,26,53),(11,61,27,54),(12,62,28,37),(13,63,29,38),(14,64,30,39),(15,65,31,40),(16,66,32,41),(17,67,33,42),(18,68,34,43),(73,133,101,110),(74,134,102,111),(75,135,103,112),(76,136,104,113),(77,137,105,114),(78,138,106,115),(79,139,107,116),(80,140,108,117),(81,141,91,118),(82,142,92,119),(83,143,93,120),(84,144,94,121),(85,127,95,122),(86,128,96,123),(87,129,97,124),(88,130,98,125),(89,131,99,126),(90,132,100,109)]])

66 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A···6F6G6H6I9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A···18I18J···18R36A···36L
order12223334444446···6666999999121212121212121218···1818···1836···36
size111122466181854542···24442224446666181818182···24···46···6

66 irreducible representations

dim111112222222222222222244444444
type+++++++--+++-+-+-+-+-+--+
imageC1C2C2C2C4S3S3D4Q8Dic3D6D6D9Dic6D12Dic6C4×S3C3⋊D4D18Dic18C4×D9C9⋊D4S32S3×Dic3C3⋊D12C322Q8S3×D9C9⋊Dic6Dic3×D9C9⋊D12
kernelDic9⋊Dic3C6×Dic9Dic3×C18C2×C9⋊Dic3C3×Dic9C2×Dic9C6×Dic3C3×C18C3×C18Dic9C2×C18C62C2×Dic3C18C18C3×C6C3×C6C3×C6C2×C6C6C6C6C2×C6C6C6C6C22C2C2C2
# reps111141111211322222366611113333

Matrix representation of Dic9⋊Dic3 in GL6(𝔽37)

3600000
0360000
001000
000100
0000611
00002617
,
31240000
060000
0036000
0003600
000001
000010
,
3600000
0360000
001100
0036000
0000360
0000036
,
3100000
3460000
0031000
006600
0000310
0000031

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,26,0,0,0,0,11,17],[31,0,0,0,0,0,24,6,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[31,34,0,0,0,0,0,6,0,0,0,0,0,0,31,6,0,0,0,0,0,6,0,0,0,0,0,0,31,0,0,0,0,0,0,31] >;

Dic9⋊Dic3 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes {\rm Dic}_3
% in TeX

G:=Group("Dic9:Dic3");
// GroupNames label

G:=SmallGroup(432,88);
// by ID

G=gap.SmallGroup(432,88);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,36,571,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^18=c^6=1,b^2=a^9,d^2=c^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^9*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽