Extensions 1→N→G→Q→1 with N=C4×D9 and Q=S3

Direct product G=N×Q with N=C4×D9 and Q=S3
dρLabelID
C4×S3×D9724C4xS3xD9432,290

Semidirect products G=N:Q with N=C4×D9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D9)⋊1S3 = Dic65D9φ: S3/C3C2 ⊆ Out C4×D9724+(C4xD9):1S3432,282
(C4×D9)⋊2S3 = D125D9φ: S3/C3C2 ⊆ Out C4×D91444-(C4xD9):2S3432,285
(C4×D9)⋊3S3 = D9×D12φ: S3/C3C2 ⊆ Out C4×D9724+(C4xD9):3S3432,292
(C4×D9)⋊4S3 = D6.D18φ: S3/C3C2 ⊆ Out C4×D9724(C4xD9):4S3432,287

Non-split extensions G=N.Q with N=C4×D9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D9).1S3 = D9×Dic6φ: S3/C3C2 ⊆ Out C4×D91444-(C4xD9).1S3432,280
(C4×D9).2S3 = C36.39D6φ: S3/C3C2 ⊆ Out C4×D91444(C4xD9).2S3432,60
(C4×D9).3S3 = D9×C3⋊C8φ: trivial image1444(C4xD9).3S3432,58

׿
×
𝔽