Extensions 1→N→G→Q→1 with N=C3 and Q=C3xS3xD4

Direct product G=NxQ with N=C3 and Q=C3xS3xD4
dρLabelID
S3xD4xC3272S3xD4xC3^2432,704

Semidirect products G=N:Q with N=C3 and Q=C3xS3xD4
extensionφ:Q→Aut NdρLabelID
C3:1(C3xS3xD4) = C3xS3xD12φ: C3xS3xD4/S3xC12C2 ⊆ Aut C3484C3:1(C3xS3xD4)432,649
C3:2(C3xS3xD4) = C3xD6:D6φ: C3xS3xD4/C3xD12C2 ⊆ Aut C3484C3:2(C3xS3xD4)432,650
C3:3(C3xS3xD4) = C3xDic3:D6φ: C3xS3xD4/C3xC3:D4C2 ⊆ Aut C3244C3:3(C3xS3xD4)432,659
C3:4(C3xS3xD4) = C3xD4xC3:S3φ: C3xS3xD4/D4xC32C2 ⊆ Aut C372C3:4(C3xS3xD4)432,714
C3:5(C3xS3xD4) = C3xS3xC3:D4φ: C3xS3xD4/S3xC2xC6C2 ⊆ Aut C3244C3:5(C3xS3xD4)432,658

Non-split extensions G=N.Q with N=C3 and Q=C3xS3xD4
extensionφ:Q→Aut NdρLabelID
C3.1(C3xS3xD4) = C3xD4xD9φ: C3xS3xD4/D4xC32C2 ⊆ Aut C3724C3.1(C3xS3xD4)432,356
C3.2(C3xS3xD4) = D4xC32:C6φ: C3xS3xD4/D4xC32C2 ⊆ Aut C33612+C3.2(C3xS3xD4)432,360
C3.3(C3xS3xD4) = D4xC9:C6φ: C3xS3xD4/D4xC32C2 ⊆ Aut C33612+C3.3(C3xS3xD4)432,362
C3.4(C3xS3xD4) = S3xD4xC9central extension (φ=1)724C3.4(C3xS3xD4)432,358

׿
x
:
Z
F
o
wr
Q
<