Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3⋊Dic3

Direct product G=N×Q with N=C3 and Q=Dic3⋊Dic3
dρLabelID
C3×Dic3⋊Dic348C3xDic3:Dic3432,428

Semidirect products G=N:Q with N=C3 and Q=Dic3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C31(Dic3⋊Dic3) = C62.80D6φ: Dic3⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3:1(Dic3:Dic3)432,452
C32(Dic3⋊Dic3) = C62.82D6φ: Dic3⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3:2(Dic3:Dic3)432,454
C33(Dic3⋊Dic3) = C62.85D6φ: Dic3⋊Dic3/C2×C3⋊Dic3C2 ⊆ Aut C348C3:3(Dic3:Dic3)432,462

Non-split extensions G=N.Q with N=C3 and Q=Dic3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3⋊Dic3) = Dic9⋊Dic3φ: Dic3⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3.1(Dic3:Dic3)432,88
C3.2(Dic3⋊Dic3) = Dic3⋊Dic9φ: Dic3⋊Dic3/C6×Dic3C2 ⊆ Aut C3144C3.2(Dic3:Dic3)432,90
C3.3(Dic3⋊Dic3) = C62.D6φ: Dic3⋊Dic3/C2×C3⋊Dic3C2 ⊆ Aut C3144C3.3(Dic3:Dic3)432,95

׿
×
𝔽