Extensions 1→N→G→Q→1 with N=C3×Dic9 and Q=C4

Direct product G=N×Q with N=C3×Dic9 and Q=C4
dρLabelID
C12×Dic9144C12xDic9432,128

Semidirect products G=N:Q with N=C3×Dic9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic9)⋊1C4 = Dic3×Dic9φ: C4/C2C2 ⊆ Out C3×Dic9144(C3xDic9):1C4432,87
(C3×Dic9)⋊2C4 = Dic9⋊Dic3φ: C4/C2C2 ⊆ Out C3×Dic9144(C3xDic9):2C4432,88
(C3×Dic9)⋊3C4 = C3×Dic9⋊C4φ: C4/C2C2 ⊆ Out C3×Dic9144(C3xDic9):3C4432,129

Non-split extensions G=N.Q with N=C3×Dic9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic9).1C4 = D9×C3⋊C8φ: C4/C2C2 ⊆ Out C3×Dic91444(C3xDic9).1C4432,58
(C3×Dic9).2C4 = C36.39D6φ: C4/C2C2 ⊆ Out C3×Dic91444(C3xDic9).2C4432,60
(C3×Dic9).3C4 = C3×C8⋊D9φ: C4/C2C2 ⊆ Out C3×Dic91442(C3xDic9).3C4432,106
(C3×Dic9).4C4 = D9×C24φ: trivial image1442(C3xDic9).4C4432,105

׿
×
𝔽