extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C4×S3) = C36.38D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C18 | 72 | 4 | C18.1(C4xS3) | 432,59 |
C18.2(C4×S3) = C36.40D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C18 | 72 | 4 | C18.2(C4xS3) | 432,61 |
C18.3(C4×S3) = Dic3×Dic9 | φ: C4×S3/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.3(C4xS3) | 432,87 |
C18.4(C4×S3) = C18.Dic6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.4(C4xS3) | 432,89 |
C18.5(C4×S3) = C6.18D36 | φ: C4×S3/Dic3 → C2 ⊆ Aut C18 | 72 | | C18.5(C4xS3) | 432,92 |
C18.6(C4×S3) = C8×D27 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | 2 | C18.6(C4xS3) | 432,5 |
C18.7(C4×S3) = C8⋊D27 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | 2 | C18.7(C4xS3) | 432,6 |
C18.8(C4×S3) = C4×Dic27 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 432 | | C18.8(C4xS3) | 432,11 |
C18.9(C4×S3) = Dic27⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 432 | | C18.9(C4xS3) | 432,12 |
C18.10(C4×S3) = D54⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | | C18.10(C4xS3) | 432,14 |
C18.11(C4×S3) = C2×C4×D27 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | | C18.11(C4xS3) | 432,44 |
C18.12(C4×S3) = C8×C9⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | | C18.12(C4xS3) | 432,169 |
C18.13(C4×S3) = C72⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | | C18.13(C4xS3) | 432,170 |
C18.14(C4×S3) = C4×C9⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 432 | | C18.14(C4xS3) | 432,180 |
C18.15(C4×S3) = C6.Dic18 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 432 | | C18.15(C4xS3) | 432,181 |
C18.16(C4×S3) = C6.11D36 | φ: C4×S3/C12 → C2 ⊆ Aut C18 | 216 | | C18.16(C4xS3) | 432,183 |
C18.17(C4×S3) = S3×C9⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.17(C4xS3) | 432,66 |
C18.18(C4×S3) = D6.Dic9 | φ: C4×S3/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.18(C4xS3) | 432,67 |
C18.19(C4×S3) = Dic3⋊Dic9 | φ: C4×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.19(C4xS3) | 432,90 |
C18.20(C4×S3) = D6⋊Dic9 | φ: C4×S3/D6 → C2 ⊆ Aut C18 | 144 | | C18.20(C4xS3) | 432,93 |
C18.21(C4×S3) = S3×C72 | central extension (φ=1) | 144 | 2 | C18.21(C4xS3) | 432,109 |
C18.22(C4×S3) = C9×C8⋊S3 | central extension (φ=1) | 144 | 2 | C18.22(C4xS3) | 432,110 |
C18.23(C4×S3) = Dic3×C36 | central extension (φ=1) | 144 | | C18.23(C4xS3) | 432,131 |
C18.24(C4×S3) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C18.24(C4xS3) | 432,132 |
C18.25(C4×S3) = C9×D6⋊C4 | central extension (φ=1) | 144 | | C18.25(C4xS3) | 432,135 |