Extensions 1→N→G→Q→1 with N=C18 and Q=C4×S3

Direct product G=N×Q with N=C18 and Q=C4×S3
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C18 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C181(C4×S3) = C2×C18.D6φ: C4×S3/Dic3C2 ⊆ Aut C1872C18:1(C4xS3)432,306
C182(C4×S3) = C2×C4×C9⋊S3φ: C4×S3/C12C2 ⊆ Aut C18216C18:2(C4xS3)432,381
C183(C4×S3) = C2×S3×Dic9φ: C4×S3/D6C2 ⊆ Aut C18144C18:3(C4xS3)432,308

Non-split extensions G=N.Q with N=C18 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C18.1(C4×S3) = C36.38D6φ: C4×S3/Dic3C2 ⊆ Aut C18724C18.1(C4xS3)432,59
C18.2(C4×S3) = C36.40D6φ: C4×S3/Dic3C2 ⊆ Aut C18724C18.2(C4xS3)432,61
C18.3(C4×S3) = Dic3×Dic9φ: C4×S3/Dic3C2 ⊆ Aut C18144C18.3(C4xS3)432,87
C18.4(C4×S3) = C18.Dic6φ: C4×S3/Dic3C2 ⊆ Aut C18144C18.4(C4xS3)432,89
C18.5(C4×S3) = C6.18D36φ: C4×S3/Dic3C2 ⊆ Aut C1872C18.5(C4xS3)432,92
C18.6(C4×S3) = C8×D27φ: C4×S3/C12C2 ⊆ Aut C182162C18.6(C4xS3)432,5
C18.7(C4×S3) = C8⋊D27φ: C4×S3/C12C2 ⊆ Aut C182162C18.7(C4xS3)432,6
C18.8(C4×S3) = C4×Dic27φ: C4×S3/C12C2 ⊆ Aut C18432C18.8(C4xS3)432,11
C18.9(C4×S3) = Dic27⋊C4φ: C4×S3/C12C2 ⊆ Aut C18432C18.9(C4xS3)432,12
C18.10(C4×S3) = D54⋊C4φ: C4×S3/C12C2 ⊆ Aut C18216C18.10(C4xS3)432,14
C18.11(C4×S3) = C2×C4×D27φ: C4×S3/C12C2 ⊆ Aut C18216C18.11(C4xS3)432,44
C18.12(C4×S3) = C8×C9⋊S3φ: C4×S3/C12C2 ⊆ Aut C18216C18.12(C4xS3)432,169
C18.13(C4×S3) = C72⋊S3φ: C4×S3/C12C2 ⊆ Aut C18216C18.13(C4xS3)432,170
C18.14(C4×S3) = C4×C9⋊Dic3φ: C4×S3/C12C2 ⊆ Aut C18432C18.14(C4xS3)432,180
C18.15(C4×S3) = C6.Dic18φ: C4×S3/C12C2 ⊆ Aut C18432C18.15(C4xS3)432,181
C18.16(C4×S3) = C6.11D36φ: C4×S3/C12C2 ⊆ Aut C18216C18.16(C4xS3)432,183
C18.17(C4×S3) = S3×C9⋊C8φ: C4×S3/D6C2 ⊆ Aut C181444C18.17(C4xS3)432,66
C18.18(C4×S3) = D6.Dic9φ: C4×S3/D6C2 ⊆ Aut C181444C18.18(C4xS3)432,67
C18.19(C4×S3) = Dic3⋊Dic9φ: C4×S3/D6C2 ⊆ Aut C18144C18.19(C4xS3)432,90
C18.20(C4×S3) = D6⋊Dic9φ: C4×S3/D6C2 ⊆ Aut C18144C18.20(C4xS3)432,93
C18.21(C4×S3) = S3×C72central extension (φ=1)1442C18.21(C4xS3)432,109
C18.22(C4×S3) = C9×C8⋊S3central extension (φ=1)1442C18.22(C4xS3)432,110
C18.23(C4×S3) = Dic3×C36central extension (φ=1)144C18.23(C4xS3)432,131
C18.24(C4×S3) = C9×Dic3⋊C4central extension (φ=1)144C18.24(C4xS3)432,132
C18.25(C4×S3) = C9×D6⋊C4central extension (φ=1)144C18.25(C4xS3)432,135

׿
×
𝔽