metabelian, supersoluble, monomial
Aliases: C6.18D36, C18.17D12, C62.58D6, C6.4(C4×D9), C9⋊1(D6⋊C4), C18.5(C4×S3), C3⋊1(D18⋊C4), (C2×Dic3)⋊2D9, (C6×Dic9)⋊1C2, (C2×Dic9)⋊1S3, (C2×C6).13D18, (C3×C18).17D4, (C2×C18).13D6, (C3×C6).35D12, C6.6(C9⋊D4), C22.9(S3×D9), (Dic3×C18)⋊2C2, C18.6(C3⋊D4), (C6×C18).7C22, (C6×Dic3).4S3, C2.2(C9⋊D12), C2.3(C3⋊D36), C32.3(D6⋊C4), C6.5(C6.D6), C6.19(C3⋊D12), C2.5(C18.D6), C3.1(C6.D12), (C2×C9⋊S3)⋊1C4, (C2×C6).19S32, (C3×C9)⋊2(C22⋊C4), (C3×C6).41(C4×S3), (C3×C18).12(C2×C4), (C22×C9⋊S3).1C2, (C3×C6).52(C3⋊D4), SmallGroup(432,92)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6.18D36
G = < a,b,c | a6=b36=c2=1, bab-1=cac=a-1, cbc=a3b-1 >
Subgroups: 1052 in 134 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, D9, C18, C18, C3⋊S3, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C22×S3, C3×C9, Dic9, C36, D18, C2×C18, C2×C18, C3×Dic3, C2×C3⋊S3, C62, D6⋊C4, C9⋊S3, C3×C18, C2×Dic9, C2×C36, C22×D9, C6×Dic3, C6×Dic3, C22×C3⋊S3, C3×Dic9, C9×Dic3, C2×C9⋊S3, C2×C9⋊S3, C6×C18, D18⋊C4, C6.D12, C6×Dic9, Dic3×C18, C22×C9⋊S3, C6.18D36
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D9, C4×S3, D12, C3⋊D4, D18, S32, D6⋊C4, C4×D9, D36, C9⋊D4, C6.D6, C3⋊D12, S3×D9, D18⋊C4, C6.D12, C18.D6, C3⋊D36, C9⋊D12, C6.18D36
(1 44 13 56 25 68)(2 69 26 57 14 45)(3 46 15 58 27 70)(4 71 28 59 16 47)(5 48 17 60 29 72)(6 37 30 61 18 49)(7 50 19 62 31 38)(8 39 32 63 20 51)(9 52 21 64 33 40)(10 41 34 65 22 53)(11 54 23 66 35 42)(12 43 36 67 24 55)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 27)(2 45)(3 25)(4 43)(5 23)(6 41)(7 21)(8 39)(9 19)(10 37)(11 17)(12 71)(13 15)(14 69)(16 67)(18 65)(20 63)(22 61)(24 59)(26 57)(28 55)(29 35)(30 53)(31 33)(32 51)(34 49)(36 47)(38 64)(40 62)(42 60)(44 58)(46 56)(48 54)(50 52)(66 72)(68 70)
G:=sub<Sym(72)| (1,44,13,56,25,68)(2,69,26,57,14,45)(3,46,15,58,27,70)(4,71,28,59,16,47)(5,48,17,60,29,72)(6,37,30,61,18,49)(7,50,19,62,31,38)(8,39,32,63,20,51)(9,52,21,64,33,40)(10,41,34,65,22,53)(11,54,23,66,35,42)(12,43,36,67,24,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,45)(3,25)(4,43)(5,23)(6,41)(7,21)(8,39)(9,19)(10,37)(11,17)(12,71)(13,15)(14,69)(16,67)(18,65)(20,63)(22,61)(24,59)(26,57)(28,55)(29,35)(30,53)(31,33)(32,51)(34,49)(36,47)(38,64)(40,62)(42,60)(44,58)(46,56)(48,54)(50,52)(66,72)(68,70)>;
G:=Group( (1,44,13,56,25,68)(2,69,26,57,14,45)(3,46,15,58,27,70)(4,71,28,59,16,47)(5,48,17,60,29,72)(6,37,30,61,18,49)(7,50,19,62,31,38)(8,39,32,63,20,51)(9,52,21,64,33,40)(10,41,34,65,22,53)(11,54,23,66,35,42)(12,43,36,67,24,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,45)(3,25)(4,43)(5,23)(6,41)(7,21)(8,39)(9,19)(10,37)(11,17)(12,71)(13,15)(14,69)(16,67)(18,65)(20,63)(22,61)(24,59)(26,57)(28,55)(29,35)(30,53)(31,33)(32,51)(34,49)(36,47)(38,64)(40,62)(42,60)(44,58)(46,56)(48,54)(50,52)(66,72)(68,70) );
G=PermutationGroup([[(1,44,13,56,25,68),(2,69,26,57,14,45),(3,46,15,58,27,70),(4,71,28,59,16,47),(5,48,17,60,29,72),(6,37,30,61,18,49),(7,50,19,62,31,38),(8,39,32,63,20,51),(9,52,21,64,33,40),(10,41,34,65,22,53),(11,54,23,66,35,42),(12,43,36,67,24,55)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,27),(2,45),(3,25),(4,43),(5,23),(6,41),(7,21),(8,39),(9,19),(10,37),(11,17),(12,71),(13,15),(14,69),(16,67),(18,65),(20,63),(22,61),(24,59),(26,57),(28,55),(29,35),(30,53),(31,33),(32,51),(34,49),(36,47),(38,64),(40,62),(42,60),(44,58),(46,56),(48,54),(50,52),(66,72),(68,70)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | 6H | 6I | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | ··· | 18I | 18J | ··· | 18R | 36A | ··· | 36L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 54 | 54 | 2 | 2 | 4 | 6 | 6 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | D6 | D6 | D9 | C4×S3 | D12 | C3⋊D4 | C4×S3 | D12 | C3⋊D4 | D18 | C4×D9 | D36 | C9⋊D4 | S32 | C6.D6 | C3⋊D12 | S3×D9 | C18.D6 | C3⋊D36 | C9⋊D12 |
kernel | C6.18D36 | C6×Dic9 | Dic3×C18 | C22×C9⋊S3 | C2×C9⋊S3 | C2×Dic9 | C6×Dic3 | C3×C18 | C2×C18 | C62 | C2×Dic3 | C18 | C18 | C18 | C3×C6 | C3×C6 | C3×C6 | C2×C6 | C6 | C6 | C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 6 | 1 | 1 | 2 | 3 | 3 | 3 | 3 |
Matrix representation of C6.18D36 ►in GL6(𝔽37)
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
36 | 35 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 19 |
0 | 0 | 0 | 0 | 35 | 8 |
1 | 0 | 0 | 0 | 0 | 0 |
36 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 3 |
0 | 0 | 0 | 0 | 15 | 20 |
G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[36,0,0,0,0,0,35,1,0,0,0,0,0,0,36,1,0,0,0,0,0,1,0,0,0,0,0,0,9,35,0,0,0,0,19,8],[1,36,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,36,0,0,0,0,0,0,17,15,0,0,0,0,3,20] >;
C6.18D36 in GAP, Magma, Sage, TeX
C_6._{18}D_{36}
% in TeX
G:=Group("C6.18D36");
// GroupNames label
G:=SmallGroup(432,92);
// by ID
G=gap.SmallGroup(432,92);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,92,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c|a^6=b^36=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=a^3*b^-1>;
// generators/relations