# Extensions 1→N→G→Q→1 with N=C2×He3⋊3C4 and Q=C2

Direct product G=N×Q with N=C2×He33C4 and Q=C2
dρLabelID
C22×He33C4144C2^2xHe3:3C4432,398

Semidirect products G=N:Q with N=C2×He33C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×He33C4)⋊1C2 = C62.4D6φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):1C2432,97
(C2×He33C4)⋊2C2 = C62.31D6φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):2C2432,189
(C2×He33C4)⋊3C2 = C624Dic3φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):3C2432,199
(C2×He33C4)⋊4C2 = C2×He32D4φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):4C2432,320
(C2×He33C4)⋊5C2 = C62.9D6φ: C2/C1C2 ⊆ Out C2×He33C4726(C2xHe3:3C4):5C2432,319
(C2×He33C4)⋊6C2 = C2×C6.S32φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):6C2432,317
(C2×He33C4)⋊7C2 = C62.16D6φ: C2/C1C2 ⊆ Out C2×He33C4726(C2xHe3:3C4):7C2432,391
(C2×He33C4)⋊8C2 = C2×He37D4φ: C2/C1C2 ⊆ Out C2×He33C472(C2xHe3:3C4):8C2432,399
(C2×He33C4)⋊9C2 = C2×C4×He3⋊C2φ: trivial image72(C2xHe3:3C4):9C2432,385

Non-split extensions G=N.Q with N=C2×He33C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×He33C4).1C2 = C62.D6φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).1C2432,95
(C2×He33C4).2C2 = C62.30D6φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).2C2432,188
(C2×He33C4).3C2 = C2×He32C8φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).3C2432,277
(C2×He33C4).4C2 = C62.3D6φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).4C2432,96
(C2×He33C4).5C2 = C2×He32Q8φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).5C2432,316
(C2×He33C4).6C2 = He3⋊C42φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).6C2432,94
(C2×He33C4).7C2 = C62.29D6φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).7C2432,187
(C2×He33C4).8C2 = He34M4(2)φ: C2/C1C2 ⊆ Out C2×He33C4726(C2xHe3:3C4).8C2432,278
(C2×He33C4).9C2 = C2×He34Q8φ: C2/C1C2 ⊆ Out C2×He33C4144(C2xHe3:3C4).9C2432,384
(C2×He33C4).10C2 = C4×He33C4φ: trivial image144(C2xHe3:3C4).10C2432,186

׿
×
𝔽