Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C3×S3

Direct product G=N×Q with N=C4×S3 and Q=C3×S3
dρLabelID
S32×C12484S3^2xC12432,648

Semidirect products G=N:Q with N=C4×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1(C3×S3) = C3×D125S3φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3):1(C3xS3)432,643
(C4×S3)⋊2(C3×S3) = C3×D6.6D6φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3):2(C3xS3)432,647
(C4×S3)⋊3(C3×S3) = C3×S3×D12φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3):3(C3xS3)432,649
(C4×S3)⋊4(C3×S3) = C3×D6.D6φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3):4(C3xS3)432,646

Non-split extensions G=N.Q with N=C4×S3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C4×S3).1(C3×S3) = C3×S3×Dic6φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3).1(C3xS3)432,642
(C4×S3).2(C3×S3) = C3×D6.Dic3φ: C3×S3/C32C2 ⊆ Out C4×S3484(C4xS3).2(C3xS3)432,416
(C4×S3).3(C3×S3) = C3×S3×C3⋊C8φ: trivial image484(C4xS3).3(C3xS3)432,414

׿
×
𝔽