Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=Dic6

Direct product G=N×Q with N=C3⋊S3 and Q=Dic6

Semidirect products G=N:Q with N=C3⋊S3 and Q=Dic6
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊Dic6 = C3⋊S3⋊Dic6φ: Dic6/C4S3 ⊆ Out C3⋊S37212-C3:S3:Dic6432,294
C3⋊S32Dic6 = C2×C33⋊Q8φ: Dic6/C6C22 ⊆ Out C3⋊S3488C3:S3:2Dic6432,758
C3⋊S33Dic6 = C335(C2×Q8)φ: Dic6/Dic3C2 ⊆ Out C3⋊S3488-C3:S3:3Dic6432,604
C3⋊S34Dic6 = C3⋊S34Dic6φ: Dic6/C12C2 ⊆ Out C3⋊S3484C3:S3:4Dic6432,687

Non-split extensions G=N.Q with N=C3⋊S3 and Q=Dic6
extensionφ:Q→Out NdρLabelID
C3⋊S3.1Dic6 = C33⋊C4⋊C4φ: Dic6/C6C22 ⊆ Out C3⋊S3484C3:S3.1Dic6432,581
C3⋊S3.2Dic6 = (C3×C6).9D12φ: Dic6/C6C22 ⊆ Out C3⋊S3488-C3:S3.2Dic6432,587
C3⋊S3.3Dic6 = C33⋊(C4⋊C4)φ: Dic6/Dic3C2 ⊆ Out C3⋊S3488-C3:S3.3Dic6432,569
C3⋊S3.4Dic6 = C339(C4⋊C4)φ: Dic6/C12C2 ⊆ Out C3⋊S3484C3:S3.4Dic6432,638