Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C3⋊Q16

Direct product G=N×Q with N=C3 and Q=C3×C3⋊Q16
dρLabelID
C32×C3⋊Q16144C3^2xC3:Q16432,478

Semidirect products G=N:Q with N=C3 and Q=C3×C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C31(C3×C3⋊Q16) = C3×C323Q16φ: C3×C3⋊Q16/C3×C3⋊C8C2 ⊆ Aut C3484C3:1(C3xC3:Q16)432,424
C32(C3×C3⋊Q16) = C3×C322Q16φ: C3×C3⋊Q16/C3×Dic6C2 ⊆ Aut C3484C3:2(C3xC3:Q16)432,423
C33(C3×C3⋊Q16) = C3×C327Q16φ: C3×C3⋊Q16/Q8×C32C2 ⊆ Aut C3144C3:3(C3xC3:Q16)432,494

Non-split extensions G=N.Q with N=C3 and Q=C3×C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C3⋊Q16) = C3×C9⋊Q16φ: C3×C3⋊Q16/Q8×C32C2 ⊆ Aut C31444C3.1(C3xC3:Q16)432,156
C3.2(C3×C3⋊Q16) = He36Q16φ: C3×C3⋊Q16/Q8×C32C2 ⊆ Aut C314412-C3.2(C3xC3:Q16)432,160
C3.3(C3×C3⋊Q16) = Dic18.C6φ: C3×C3⋊Q16/Q8×C32C2 ⊆ Aut C314412-C3.3(C3xC3:Q16)432,162
C3.4(C3×C3⋊Q16) = C9×C3⋊Q16central extension (φ=1)1444C3.4(C3xC3:Q16)432,159

׿
×
𝔽