Copied to
clipboard

G = Dic18.C6order 432 = 24·33

1st non-split extension by Dic18 of C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: Dic18.1C6, 3- 1+22Q16, C9⋊C8.C6, C9⋊C24.C2, C9⋊Q16⋊C3, C92(C3×Q16), C36.3(C2×C6), C18.9(C3×D4), (Q8×C9).1C6, C12.11(S3×C6), (C3×C12).14D6, Q8.3(C9⋊C6), C32.(C3⋊Q16), C36.C6.1C2, (Q8×C32).2S3, C2.6(Dic9⋊C6), (C2×3- 1+2).9D4, (Q8×3- 1+2).1C2, (C4×3- 1+2).3C22, C4.3(C2×C9⋊C6), C6.28(C3×C3⋊D4), C3.3(C3×C3⋊Q16), (C3×Q8).25(C3×S3), (C3×C6).29(C3⋊D4), SmallGroup(432,162)

Series: Derived Chief Lower central Upper central

C1C36 — Dic18.C6
C1C3C9C18C36C4×3- 1+2C36.C6 — Dic18.C6
C9C18C36 — Dic18.C6
C1C2C4Q8

Generators and relations for Dic18.C6
 G = < a,b,c | a36=1, b2=c6=a18, bab-1=a-1, cac-1=a7, cbc-1=a9b >

Subgroups: 190 in 60 conjugacy classes, 26 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C3×Q8, 3- 1+2, Dic9, C36, C36, C3×Dic3, C3×C12, C3×C12, C3⋊Q16, C3×Q16, C2×3- 1+2, C9⋊C8, Dic18, Q8×C9, Q8×C9, C3×C3⋊C8, C3×Dic6, Q8×C32, C9⋊C12, C4×3- 1+2, C4×3- 1+2, C9⋊Q16, C3×C3⋊Q16, C9⋊C24, C36.C6, Q8×3- 1+2, Dic18.C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, C3⋊D4, C3×D4, S3×C6, C3⋊Q16, C3×Q16, C9⋊C6, C3×C3⋊D4, C2×C9⋊C6, C3×C3⋊Q16, Dic9⋊C6, Dic18.C6

Smallest permutation representation of Dic18.C6
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 101 19 83)(2 100 20 82)(3 99 21 81)(4 98 22 80)(5 97 23 79)(6 96 24 78)(7 95 25 77)(8 94 26 76)(9 93 27 75)(10 92 28 74)(11 91 29 73)(12 90 30 108)(13 89 31 107)(14 88 32 106)(15 87 33 105)(16 86 34 104)(17 85 35 103)(18 84 36 102)(37 135 55 117)(38 134 56 116)(39 133 57 115)(40 132 58 114)(41 131 59 113)(42 130 60 112)(43 129 61 111)(44 128 62 110)(45 127 63 109)(46 126 64 144)(47 125 65 143)(48 124 66 142)(49 123 67 141)(50 122 68 140)(51 121 69 139)(52 120 70 138)(53 119 71 137)(54 118 72 136)
(1 72 19 54)(2 67 8 37 14 43 20 49 26 55 32 61)(3 62 33 56 27 50 21 44 15 38 9 68)(4 57 22 39)(5 52 11 58 17 64 23 70 29 40 35 46)(6 47 36 41 30 71 24 65 18 59 12 53)(7 42 25 60)(10 63 28 45)(13 48 31 66)(16 69 34 51)(73 123 103 117 97 111 91 141 85 135 79 129)(74 118 92 136)(75 113 81 119 87 125 93 131 99 137 105 143)(76 144 106 138 100 132 94 126 88 120 82 114)(77 139 95 121)(78 134 84 140 90 110 96 116 102 122 108 128)(80 124 98 142)(83 109 101 127)(86 130 104 112)(89 115 107 133)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,101,19,83)(2,100,20,82)(3,99,21,81)(4,98,22,80)(5,97,23,79)(6,96,24,78)(7,95,25,77)(8,94,26,76)(9,93,27,75)(10,92,28,74)(11,91,29,73)(12,90,30,108)(13,89,31,107)(14,88,32,106)(15,87,33,105)(16,86,34,104)(17,85,35,103)(18,84,36,102)(37,135,55,117)(38,134,56,116)(39,133,57,115)(40,132,58,114)(41,131,59,113)(42,130,60,112)(43,129,61,111)(44,128,62,110)(45,127,63,109)(46,126,64,144)(47,125,65,143)(48,124,66,142)(49,123,67,141)(50,122,68,140)(51,121,69,139)(52,120,70,138)(53,119,71,137)(54,118,72,136), (1,72,19,54)(2,67,8,37,14,43,20,49,26,55,32,61)(3,62,33,56,27,50,21,44,15,38,9,68)(4,57,22,39)(5,52,11,58,17,64,23,70,29,40,35,46)(6,47,36,41,30,71,24,65,18,59,12,53)(7,42,25,60)(10,63,28,45)(13,48,31,66)(16,69,34,51)(73,123,103,117,97,111,91,141,85,135,79,129)(74,118,92,136)(75,113,81,119,87,125,93,131,99,137,105,143)(76,144,106,138,100,132,94,126,88,120,82,114)(77,139,95,121)(78,134,84,140,90,110,96,116,102,122,108,128)(80,124,98,142)(83,109,101,127)(86,130,104,112)(89,115,107,133)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,101,19,83)(2,100,20,82)(3,99,21,81)(4,98,22,80)(5,97,23,79)(6,96,24,78)(7,95,25,77)(8,94,26,76)(9,93,27,75)(10,92,28,74)(11,91,29,73)(12,90,30,108)(13,89,31,107)(14,88,32,106)(15,87,33,105)(16,86,34,104)(17,85,35,103)(18,84,36,102)(37,135,55,117)(38,134,56,116)(39,133,57,115)(40,132,58,114)(41,131,59,113)(42,130,60,112)(43,129,61,111)(44,128,62,110)(45,127,63,109)(46,126,64,144)(47,125,65,143)(48,124,66,142)(49,123,67,141)(50,122,68,140)(51,121,69,139)(52,120,70,138)(53,119,71,137)(54,118,72,136), (1,72,19,54)(2,67,8,37,14,43,20,49,26,55,32,61)(3,62,33,56,27,50,21,44,15,38,9,68)(4,57,22,39)(5,52,11,58,17,64,23,70,29,40,35,46)(6,47,36,41,30,71,24,65,18,59,12,53)(7,42,25,60)(10,63,28,45)(13,48,31,66)(16,69,34,51)(73,123,103,117,97,111,91,141,85,135,79,129)(74,118,92,136)(75,113,81,119,87,125,93,131,99,137,105,143)(76,144,106,138,100,132,94,126,88,120,82,114)(77,139,95,121)(78,134,84,140,90,110,96,116,102,122,108,128)(80,124,98,142)(83,109,101,127)(86,130,104,112)(89,115,107,133) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,101,19,83),(2,100,20,82),(3,99,21,81),(4,98,22,80),(5,97,23,79),(6,96,24,78),(7,95,25,77),(8,94,26,76),(9,93,27,75),(10,92,28,74),(11,91,29,73),(12,90,30,108),(13,89,31,107),(14,88,32,106),(15,87,33,105),(16,86,34,104),(17,85,35,103),(18,84,36,102),(37,135,55,117),(38,134,56,116),(39,133,57,115),(40,132,58,114),(41,131,59,113),(42,130,60,112),(43,129,61,111),(44,128,62,110),(45,127,63,109),(46,126,64,144),(47,125,65,143),(48,124,66,142),(49,123,67,141),(50,122,68,140),(51,121,69,139),(52,120,70,138),(53,119,71,137),(54,118,72,136)], [(1,72,19,54),(2,67,8,37,14,43,20,49,26,55,32,61),(3,62,33,56,27,50,21,44,15,38,9,68),(4,57,22,39),(5,52,11,58,17,64,23,70,29,40,35,46),(6,47,36,41,30,71,24,65,18,59,12,53),(7,42,25,60),(10,63,28,45),(13,48,31,66),(16,69,34,51),(73,123,103,117,97,111,91,141,85,135,79,129),(74,118,92,136),(75,113,81,119,87,125,93,131,99,137,105,143),(76,144,106,138,100,132,94,126,88,120,82,114),(77,139,95,121),(78,134,84,140,90,110,96,116,102,122,108,128),(80,124,98,142),(83,109,101,127),(86,130,104,112),(89,115,107,133)]])

41 conjugacy classes

class 1  2 3A3B3C4A4B4C6A6B6C8A8B9A9B9C12A12B12C12D12E12F12G12H12I18A18B18C24A24B24C24D36A···36I
order12333444666889991212121212121212121818182424242436···36
size112332436233181866644466121236366661818181812···12

41 irreducible representations

dim1111111112222222222244666
type++++-+++--++
imageC1C2C2C2C3C6C6C6Dic18.C6S3D4D6Q16C3×S3C3×D4C3⋊D4S3×C6C3×Q16C3×C3⋊D4C3⋊Q16C3×C3⋊Q16C9⋊C6C2×C9⋊C6Dic9⋊C6
kernelDic18.C6C9⋊C24C36.C6Q8×3- 1+2C9⋊Q16C9⋊C8Dic18Q8×C9C1Q8×C32C2×3- 1+2C3×C123- 1+2C3×Q8C18C3×C6C12C9C6C32C3Q8C4C2
# reps111122221111222224412112

Matrix representation of Dic18.C6 in GL10(𝔽73)

00172000000
0010000000
72100000000
72000000000
000072722100
000072721200
000000117272
000072721110
00000721100
00007201100
,
4145221000000
13322351000000
2213228000000
23516041000000
000062710000
000060110000
0000011006260
0000620007111
0000011626000
0000620711100
,
65165830000000
5784315000000
5830857000000
43151665000000
0000100000
0000010000
0000000100
000011727200
000011007272
0000000010

G:=sub<GL(10,GF(73))| [0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,72,72,0,72,0,72,0,0,0,0,72,72,0,72,72,0,0,0,0,0,2,1,1,1,1,1,0,0,0,0,1,2,1,1,1,1,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0],[41,13,22,23,0,0,0,0,0,0,45,32,1,51,0,0,0,0,0,0,22,23,32,60,0,0,0,0,0,0,1,51,28,41,0,0,0,0,0,0,0,0,0,0,62,60,0,62,0,62,0,0,0,0,71,11,11,0,11,0,0,0,0,0,0,0,0,0,62,71,0,0,0,0,0,0,0,0,60,11,0,0,0,0,0,0,62,71,0,0,0,0,0,0,0,0,60,11,0,0],[65,57,58,43,0,0,0,0,0,0,16,8,30,15,0,0,0,0,0,0,58,43,8,16,0,0,0,0,0,0,30,15,57,65,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0] >;

Dic18.C6 in GAP, Magma, Sage, TeX

{\rm Dic}_{18}.C_6
% in TeX

G:=Group("Dic18.C6");
// GroupNames label

G:=SmallGroup(432,162);
// by ID

G=gap.SmallGroup(432,162);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,176,1011,514,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^36=1,b^2=c^6=a^18,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations

׿
×
𝔽