extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3⋊Dic3) = C36.69D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.1(C3:Dic3) | 432,179 |
C12.2(C3⋊Dic3) = C36⋊Dic3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.2(C3:Dic3) | 432,182 |
C12.3(C3⋊Dic3) = C33⋊18M4(2) | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 216 | | C12.3(C3:Dic3) | 432,502 |
C12.4(C3⋊Dic3) = C72.S3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.4(C3:Dic3) | 432,32 |
C12.5(C3⋊Dic3) = C2×C36.S3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.5(C3:Dic3) | 432,178 |
C12.6(C3⋊Dic3) = C4×C9⋊Dic3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.6(C3:Dic3) | 432,180 |
C12.7(C3⋊Dic3) = C33⋊7C16 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.7(C3:Dic3) | 432,231 |
C12.8(C3⋊Dic3) = C2×C33⋊7C8 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 432 | | C12.8(C3:Dic3) | 432,501 |
C12.9(C3⋊Dic3) = He3⋊8M4(2) | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | 6 | C12.9(C3:Dic3) | 432,185 |
C12.10(C3⋊Dic3) = C62.30D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.10(C3:Dic3) | 432,188 |
C12.11(C3⋊Dic3) = C3×C12.58D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | | C12.11(C3:Dic3) | 432,486 |
C12.12(C3⋊Dic3) = He3⋊4C16 | central extension (φ=1) | 144 | 3 | C12.12(C3:Dic3) | 432,33 |
C12.13(C3⋊Dic3) = C2×He3⋊4C8 | central extension (φ=1) | 144 | | C12.13(C3:Dic3) | 432,184 |
C12.14(C3⋊Dic3) = C4×He3⋊3C4 | central extension (φ=1) | 144 | | C12.14(C3:Dic3) | 432,186 |
C12.15(C3⋊Dic3) = C3×C24.S3 | central extension (φ=1) | 144 | | C12.15(C3:Dic3) | 432,230 |
C12.16(C3⋊Dic3) = C6×C32⋊4C8 | central extension (φ=1) | 144 | | C12.16(C3:Dic3) | 432,485 |