Extensions 1→N→G→Q→1 with N=C12 and Q=C3⋊Dic3

Direct product G=N×Q with N=C12 and Q=C3⋊Dic3
dρLabelID
C12×C3⋊Dic3144C12xC3:Dic3432,487

Semidirect products G=N:Q with N=C12 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C121(C3⋊Dic3) = C62.147D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12:1(C3:Dic3)432,505
C122(C3⋊Dic3) = C4×C335C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12:2(C3:Dic3)432,503
C123(C3⋊Dic3) = C3×C12⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12144C12:3(C3:Dic3)432,489

Non-split extensions G=N.Q with N=C12 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C12.1(C3⋊Dic3) = C36.69D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12216C12.1(C3:Dic3)432,179
C12.2(C3⋊Dic3) = C36⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.2(C3:Dic3)432,182
C12.3(C3⋊Dic3) = C3318M4(2)φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12216C12.3(C3:Dic3)432,502
C12.4(C3⋊Dic3) = C72.S3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.4(C3:Dic3)432,32
C12.5(C3⋊Dic3) = C2×C36.S3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.5(C3:Dic3)432,178
C12.6(C3⋊Dic3) = C4×C9⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.6(C3:Dic3)432,180
C12.7(C3⋊Dic3) = C337C16φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.7(C3:Dic3)432,231
C12.8(C3⋊Dic3) = C2×C337C8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12432C12.8(C3:Dic3)432,501
C12.9(C3⋊Dic3) = He38M4(2)φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12726C12.9(C3:Dic3)432,185
C12.10(C3⋊Dic3) = C62.30D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C12144C12.10(C3:Dic3)432,188
C12.11(C3⋊Dic3) = C3×C12.58D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C1272C12.11(C3:Dic3)432,486
C12.12(C3⋊Dic3) = He34C16central extension (φ=1)1443C12.12(C3:Dic3)432,33
C12.13(C3⋊Dic3) = C2×He34C8central extension (φ=1)144C12.13(C3:Dic3)432,184
C12.14(C3⋊Dic3) = C4×He33C4central extension (φ=1)144C12.14(C3:Dic3)432,186
C12.15(C3⋊Dic3) = C3×C24.S3central extension (φ=1)144C12.15(C3:Dic3)432,230
C12.16(C3⋊Dic3) = C6×C324C8central extension (φ=1)144C12.16(C3:Dic3)432,485

׿
×
𝔽