Extensions 1→N→G→Q→1 with N=He3 and Q=M4(2)

Direct product G=N×Q with N=He3 and Q=M4(2)
dρLabelID
M4(2)×He3726M4(2)xHe3432,213

Semidirect products G=N:Q with N=He3 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
He31M4(2) = He31M4(2)φ: M4(2)/C4C4 ⊆ Out He3726He3:1M4(2)432,274
He32M4(2) = He3⋊M4(2)φ: M4(2)/C4C22 ⊆ Out He3726He3:2M4(2)432,77
He33M4(2) = He33M4(2)φ: M4(2)/C4C22 ⊆ Out He3726He3:3M4(2)432,82
He34M4(2) = He34M4(2)φ: M4(2)/C22C4 ⊆ Out He3726He3:4M4(2)432,278
He35M4(2) = He35M4(2)φ: M4(2)/C8C2 ⊆ Out He3726He3:5M4(2)432,116
He36M4(2) = He36M4(2)φ: M4(2)/C8C2 ⊆ Out He3726He3:6M4(2)432,174
He37M4(2) = He37M4(2)φ: M4(2)/C2×C4C2 ⊆ Out He3726He3:7M4(2)432,137
He38M4(2) = He38M4(2)φ: M4(2)/C2×C4C2 ⊆ Out He3726He3:8M4(2)432,185


׿
×
𝔽