Copied to
clipboard

G = He35M4(2)  order 432 = 24·33

1st semidirect product of He3 and M4(2) acting via M4(2)/C8=C2

metabelian, supersoluble, monomial

Aliases: He35M4(2), C24⋊S3⋊C3, (C3×C24)⋊5C6, (C3×C24)⋊7S3, C6.8(S3×C12), (C8×He3)⋊8C2, C3⋊Dic3.C12, C12.87(S3×C6), C24.20(C3×S3), C83(C32⋊C6), C324C84C6, (C3×C12).57D6, He33C811C2, C32⋊C12.3C4, C323(C8⋊S3), C321(C3×M4(2)), (C4×He3).42C22, (C2×C3⋊S3).C12, (C4×C3⋊S3).2C6, C3.2(C3×C8⋊S3), (C3×C6).11(C4×S3), (C3×C6).2(C2×C12), C2.3(C4×C32⋊C6), (C3×C12).14(C2×C6), (C4×C32⋊C6).5C2, (C2×C32⋊C6).3C4, C4.13(C2×C32⋊C6), (C2×He3).18(C2×C4), SmallGroup(432,116)

Series: Derived Chief Lower central Upper central

C1C3×C6 — He35M4(2)
C1C3C32C3×C6C3×C12C4×He3C4×C32⋊C6 — He35M4(2)
C32C3×C6 — He35M4(2)
C1C4C8

Generators and relations for He35M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, cd=dc, ce=ec, ede=d5 >

Subgroups: 321 in 78 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C24, C4×S3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C3×M4(2), C32⋊C6, C2×He3, C3×C3⋊C8, C324C8, C3×C24, C3×C24, S3×C12, C4×C3⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, C3×C8⋊S3, C24⋊S3, He33C8, C8×He3, C4×C32⋊C6, He35M4(2)
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C12, D6, C2×C6, M4(2), C3×S3, C4×S3, C2×C12, S3×C6, C8⋊S3, C3×M4(2), C32⋊C6, S3×C12, C2×C32⋊C6, C3×C8⋊S3, C4×C32⋊C6, He35M4(2)

Smallest permutation representation of He35M4(2)
On 72 points
Generators in S72
(9 58 17)(10 18 59)(11 60 19)(12 20 61)(13 62 21)(14 22 63)(15 64 23)(16 24 57)(33 42 55)(34 56 43)(35 44 49)(36 50 45)(37 46 51)(38 52 47)(39 48 53)(40 54 41)
(1 25 67)(2 68 26)(3 27 69)(4 70 28)(5 29 71)(6 72 30)(7 31 65)(8 66 32)(9 58 17)(10 18 59)(11 60 19)(12 20 61)(13 62 21)(14 22 63)(15 64 23)(16 24 57)(33 55 42)(34 43 56)(35 49 44)(36 45 50)(37 51 46)(38 47 52)(39 53 48)(40 41 54)
(1 37 17)(2 38 18)(3 39 19)(4 40 20)(5 33 21)(6 34 22)(7 35 23)(8 36 24)(9 25 51)(10 26 52)(11 27 53)(12 28 54)(13 29 55)(14 30 56)(15 31 49)(16 32 50)(41 61 70)(42 62 71)(43 63 72)(44 64 65)(45 57 66)(46 58 67)(47 59 68)(48 60 69)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 6)(4 8)(9 58)(10 63)(11 60)(12 57)(13 62)(14 59)(15 64)(16 61)(18 22)(20 24)(25 67)(26 72)(27 69)(28 66)(29 71)(30 68)(31 65)(32 70)(34 38)(36 40)(41 50)(42 55)(43 52)(44 49)(45 54)(46 51)(47 56)(48 53)

G:=sub<Sym(72)| (9,58,17)(10,18,59)(11,60,19)(12,20,61)(13,62,21)(14,22,63)(15,64,23)(16,24,57)(33,42,55)(34,56,43)(35,44,49)(36,50,45)(37,46,51)(38,52,47)(39,48,53)(40,54,41), (1,25,67)(2,68,26)(3,27,69)(4,70,28)(5,29,71)(6,72,30)(7,31,65)(8,66,32)(9,58,17)(10,18,59)(11,60,19)(12,20,61)(13,62,21)(14,22,63)(15,64,23)(16,24,57)(33,55,42)(34,43,56)(35,49,44)(36,45,50)(37,51,46)(38,47,52)(39,53,48)(40,41,54), (1,37,17)(2,38,18)(3,39,19)(4,40,20)(5,33,21)(6,34,22)(7,35,23)(8,36,24)(9,25,51)(10,26,52)(11,27,53)(12,28,54)(13,29,55)(14,30,56)(15,31,49)(16,32,50)(41,61,70)(42,62,71)(43,63,72)(44,64,65)(45,57,66)(46,58,67)(47,59,68)(48,60,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(9,58)(10,63)(11,60)(12,57)(13,62)(14,59)(15,64)(16,61)(18,22)(20,24)(25,67)(26,72)(27,69)(28,66)(29,71)(30,68)(31,65)(32,70)(34,38)(36,40)(41,50)(42,55)(43,52)(44,49)(45,54)(46,51)(47,56)(48,53)>;

G:=Group( (9,58,17)(10,18,59)(11,60,19)(12,20,61)(13,62,21)(14,22,63)(15,64,23)(16,24,57)(33,42,55)(34,56,43)(35,44,49)(36,50,45)(37,46,51)(38,52,47)(39,48,53)(40,54,41), (1,25,67)(2,68,26)(3,27,69)(4,70,28)(5,29,71)(6,72,30)(7,31,65)(8,66,32)(9,58,17)(10,18,59)(11,60,19)(12,20,61)(13,62,21)(14,22,63)(15,64,23)(16,24,57)(33,55,42)(34,43,56)(35,49,44)(36,45,50)(37,51,46)(38,47,52)(39,53,48)(40,41,54), (1,37,17)(2,38,18)(3,39,19)(4,40,20)(5,33,21)(6,34,22)(7,35,23)(8,36,24)(9,25,51)(10,26,52)(11,27,53)(12,28,54)(13,29,55)(14,30,56)(15,31,49)(16,32,50)(41,61,70)(42,62,71)(43,63,72)(44,64,65)(45,57,66)(46,58,67)(47,59,68)(48,60,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(9,58)(10,63)(11,60)(12,57)(13,62)(14,59)(15,64)(16,61)(18,22)(20,24)(25,67)(26,72)(27,69)(28,66)(29,71)(30,68)(31,65)(32,70)(34,38)(36,40)(41,50)(42,55)(43,52)(44,49)(45,54)(46,51)(47,56)(48,53) );

G=PermutationGroup([[(9,58,17),(10,18,59),(11,60,19),(12,20,61),(13,62,21),(14,22,63),(15,64,23),(16,24,57),(33,42,55),(34,56,43),(35,44,49),(36,50,45),(37,46,51),(38,52,47),(39,48,53),(40,54,41)], [(1,25,67),(2,68,26),(3,27,69),(4,70,28),(5,29,71),(6,72,30),(7,31,65),(8,66,32),(9,58,17),(10,18,59),(11,60,19),(12,20,61),(13,62,21),(14,22,63),(15,64,23),(16,24,57),(33,55,42),(34,43,56),(35,49,44),(36,45,50),(37,51,46),(38,47,52),(39,53,48),(40,41,54)], [(1,37,17),(2,38,18),(3,39,19),(4,40,20),(5,33,21),(6,34,22),(7,35,23),(8,36,24),(9,25,51),(10,26,52),(11,27,53),(12,28,54),(13,29,55),(14,30,56),(15,31,49),(16,32,50),(41,61,70),(42,62,71),(43,63,72),(44,64,65),(45,57,66),(46,58,67),(47,59,68),(48,60,69)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,6),(4,8),(9,58),(10,63),(11,60),(12,57),(13,62),(14,59),(15,64),(16,61),(18,22),(20,24),(25,67),(26,72),(27,69),(28,66),(29,71),(30,68),(31,65),(32,70),(34,38),(36,40),(41,50),(42,55),(43,52),(44,49),(45,54),(46,51),(47,56),(48,53)]])

62 conjugacy classes

class 1 2A2B3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F6G6H8A8B8C8D12A12B12C12D12E12F12G···12L12M12N24A24B24C24D24E···24T24U24V24W24X
order12233333344466666666888812121212121212···1212122424242424···2424242424
size1118233666111823366618182218182233336···6181822226···618181818

62 irreducible representations

dim11111111111122222222226666
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D6M4(2)C3×S3C4×S3S3×C6C8⋊S3C3×M4(2)S3×C12C3×C8⋊S3C32⋊C6C2×C32⋊C6C4×C32⋊C6He35M4(2)
kernelHe35M4(2)He33C8C8×He3C4×C32⋊C6C24⋊S3C32⋊C12C2×C32⋊C6C324C8C3×C24C4×C3⋊S3C3⋊Dic3C2×C3⋊S3C3×C24C3×C12He3C24C3×C6C12C32C32C6C3C8C4C2C1
# reps11112222224411222244481124

Matrix representation of He35M4(2) in GL8(𝔽73)

7272000000
10000000
00100000
00010000
000072100
000072000
000000072
000000172
,
10000000
01000000
007210000
007200000
000072100
000072000
000000721
000000720
,
10000000
01000000
00001000
00000100
00000010
00000001
00100000
00010000
,
7067000000
703000000
000270000
002700000
000002700
000027000
000000027
000000270
,
720000000
11000000
00010000
00100000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(73))| [72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[70,70,0,0,0,0,0,0,67,3,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0],[72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

He35M4(2) in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_5M_4(2)
% in TeX

G:=Group("He3:5M4(2)");
// GroupNames label

G:=SmallGroup(432,116);
// by ID

G=gap.SmallGroup(432,116);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,80,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽