Copied to
clipboard

G = S3xD37order 444 = 22·3·37

Direct product of S3 and D37

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3xD37, C37:1D6, C3:1D74, D111:C2, C111:C22, (S3xC37):C2, (C3xD37):C2, SmallGroup(444,11)

Series: Derived Chief Lower central Upper central

C1C111 — S3xD37
C1C37C111C3xD37 — S3xD37
C111 — S3xD37
C1

Generators and relations for S3xD37
 G = < a,b,c,d | a3=b2=c37=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 392 in 20 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C22, S3, D6, D37, D74, S3xD37
3C2
37C2
111C2
111C22
37C6
37S3
3C74
3D37
37D6
3D74

Smallest permutation representation of S3xD37
On 111 points
Generators in S111
(1 58 84)(2 59 85)(3 60 86)(4 61 87)(5 62 88)(6 63 89)(7 64 90)(8 65 91)(9 66 92)(10 67 93)(11 68 94)(12 69 95)(13 70 96)(14 71 97)(15 72 98)(16 73 99)(17 74 100)(18 38 101)(19 39 102)(20 40 103)(21 41 104)(22 42 105)(23 43 106)(24 44 107)(25 45 108)(26 46 109)(27 47 110)(28 48 111)(29 49 75)(30 50 76)(31 51 77)(32 52 78)(33 53 79)(34 54 80)(35 55 81)(36 56 82)(37 57 83)
(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 75)(50 76)(51 77)(52 78)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 20)(38 40)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 60)(56 59)(57 58)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)

G:=sub<Sym(111)| (1,58,84)(2,59,85)(3,60,86)(4,61,87)(5,62,88)(6,63,89)(7,64,90)(8,65,91)(9,66,92)(10,67,93)(11,68,94)(12,69,95)(13,70,96)(14,71,97)(15,72,98)(16,73,99)(17,74,100)(18,38,101)(19,39,102)(20,40,103)(21,41,104)(22,42,105)(23,43,106)(24,44,107)(25,45,108)(26,46,109)(27,47,110)(28,48,111)(29,49,75)(30,50,76)(31,51,77)(32,52,78)(33,53,79)(34,54,80)(35,55,81)(36,56,82)(37,57,83), (38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(38,40)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)>;

G:=Group( (1,58,84)(2,59,85)(3,60,86)(4,61,87)(5,62,88)(6,63,89)(7,64,90)(8,65,91)(9,66,92)(10,67,93)(11,68,94)(12,69,95)(13,70,96)(14,71,97)(15,72,98)(16,73,99)(17,74,100)(18,38,101)(19,39,102)(20,40,103)(21,41,104)(22,42,105)(23,43,106)(24,44,107)(25,45,108)(26,46,109)(27,47,110)(28,48,111)(29,49,75)(30,50,76)(31,51,77)(32,52,78)(33,53,79)(34,54,80)(35,55,81)(36,56,82)(37,57,83), (38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(38,40)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103) );

G=PermutationGroup([[(1,58,84),(2,59,85),(3,60,86),(4,61,87),(5,62,88),(6,63,89),(7,64,90),(8,65,91),(9,66,92),(10,67,93),(11,68,94),(12,69,95),(13,70,96),(14,71,97),(15,72,98),(16,73,99),(17,74,100),(18,38,101),(19,39,102),(20,40,103),(21,41,104),(22,42,105),(23,43,106),(24,44,107),(25,45,108),(26,46,109),(27,47,110),(28,48,111),(29,49,75),(30,50,76),(31,51,77),(32,52,78),(33,53,79),(34,54,80),(35,55,81),(36,56,82),(37,57,83)], [(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,75),(50,76),(51,77),(52,78),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,20),(38,40),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,60),(56,59),(57,58),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)]])

60 conjugacy classes

class 1 2A2B2C 3  6 37A···37R74A···74R111A···111R
order12223637···3774···74111···111
size13371112742···26···64···4

60 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2S3D6D37D74S3xD37
kernelS3xD37S3xC37C3xD37D111D37C37S3C3C1
# reps111111181818

Matrix representation of S3xD37 in GL4(F223) generated by

1000
0100
00132
00202221
,
222000
022200
00222191
0001
,
11100
12115300
0010
0001
,
1108300
211300
0010
0001
G:=sub<GL(4,GF(223))| [1,0,0,0,0,1,0,0,0,0,1,202,0,0,32,221],[222,0,0,0,0,222,0,0,0,0,222,0,0,0,191,1],[11,121,0,0,1,153,0,0,0,0,1,0,0,0,0,1],[110,2,0,0,83,113,0,0,0,0,1,0,0,0,0,1] >;

S3xD37 in GAP, Magma, Sage, TeX

S_3\times D_{37}
% in TeX

G:=Group("S3xD37");
// GroupNames label

G:=SmallGroup(444,11);
// by ID

G=gap.SmallGroup(444,11);
# by ID

G:=PCGroup([4,-2,-2,-3,-37,54,6915]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^37=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3xD37 in TeX

׿
x
:
Z
F
o
wr
Q
<