Copied to
clipboard

G = S3×D37order 444 = 22·3·37

Direct product of S3 and D37

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D37, C371D6, C31D74, D111⋊C2, C111⋊C22, (S3×C37)⋊C2, (C3×D37)⋊C2, SmallGroup(444,11)

Series: Derived Chief Lower central Upper central

C1C111 — S3×D37
C1C37C111C3×D37 — S3×D37
C111 — S3×D37
C1

Generators and relations for S3×D37
 G = < a,b,c,d | a3=b2=c37=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
37C2
111C2
111C22
37C6
37S3
3C74
3D37
37D6
3D74

Smallest permutation representation of S3×D37
On 111 points
Generators in S111
(1 58 84)(2 59 85)(3 60 86)(4 61 87)(5 62 88)(6 63 89)(7 64 90)(8 65 91)(9 66 92)(10 67 93)(11 68 94)(12 69 95)(13 70 96)(14 71 97)(15 72 98)(16 73 99)(17 74 100)(18 38 101)(19 39 102)(20 40 103)(21 41 104)(22 42 105)(23 43 106)(24 44 107)(25 45 108)(26 46 109)(27 47 110)(28 48 111)(29 49 75)(30 50 76)(31 51 77)(32 52 78)(33 53 79)(34 54 80)(35 55 81)(36 56 82)(37 57 83)
(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 75)(50 76)(51 77)(52 78)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 20)(38 40)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 60)(56 59)(57 58)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)

G:=sub<Sym(111)| (1,58,84)(2,59,85)(3,60,86)(4,61,87)(5,62,88)(6,63,89)(7,64,90)(8,65,91)(9,66,92)(10,67,93)(11,68,94)(12,69,95)(13,70,96)(14,71,97)(15,72,98)(16,73,99)(17,74,100)(18,38,101)(19,39,102)(20,40,103)(21,41,104)(22,42,105)(23,43,106)(24,44,107)(25,45,108)(26,46,109)(27,47,110)(28,48,111)(29,49,75)(30,50,76)(31,51,77)(32,52,78)(33,53,79)(34,54,80)(35,55,81)(36,56,82)(37,57,83), (38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(38,40)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)>;

G:=Group( (1,58,84)(2,59,85)(3,60,86)(4,61,87)(5,62,88)(6,63,89)(7,64,90)(8,65,91)(9,66,92)(10,67,93)(11,68,94)(12,69,95)(13,70,96)(14,71,97)(15,72,98)(16,73,99)(17,74,100)(18,38,101)(19,39,102)(20,40,103)(21,41,104)(22,42,105)(23,43,106)(24,44,107)(25,45,108)(26,46,109)(27,47,110)(28,48,111)(29,49,75)(30,50,76)(31,51,77)(32,52,78)(33,53,79)(34,54,80)(35,55,81)(36,56,82)(37,57,83), (38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(38,40)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103) );

G=PermutationGroup([[(1,58,84),(2,59,85),(3,60,86),(4,61,87),(5,62,88),(6,63,89),(7,64,90),(8,65,91),(9,66,92),(10,67,93),(11,68,94),(12,69,95),(13,70,96),(14,71,97),(15,72,98),(16,73,99),(17,74,100),(18,38,101),(19,39,102),(20,40,103),(21,41,104),(22,42,105),(23,43,106),(24,44,107),(25,45,108),(26,46,109),(27,47,110),(28,48,111),(29,49,75),(30,50,76),(31,51,77),(32,52,78),(33,53,79),(34,54,80),(35,55,81),(36,56,82),(37,57,83)], [(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,75),(50,76),(51,77),(52,78),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,20),(38,40),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,60),(56,59),(57,58),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)]])

60 conjugacy classes

class 1 2A2B2C 3  6 37A···37R74A···74R111A···111R
order12223637···3774···74111···111
size13371112742···26···64···4

60 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2S3D6D37D74S3×D37
kernelS3×D37S3×C37C3×D37D111D37C37S3C3C1
# reps111111181818

Matrix representation of S3×D37 in GL4(𝔽223) generated by

1000
0100
00132
00202221
,
222000
022200
00222191
0001
,
11100
12115300
0010
0001
,
1108300
211300
0010
0001
G:=sub<GL(4,GF(223))| [1,0,0,0,0,1,0,0,0,0,1,202,0,0,32,221],[222,0,0,0,0,222,0,0,0,0,222,0,0,0,191,1],[11,121,0,0,1,153,0,0,0,0,1,0,0,0,0,1],[110,2,0,0,83,113,0,0,0,0,1,0,0,0,0,1] >;

S3×D37 in GAP, Magma, Sage, TeX

S_3\times D_{37}
% in TeX

G:=Group("S3xD37");
// GroupNames label

G:=SmallGroup(444,11);
// by ID

G=gap.SmallGroup(444,11);
# by ID

G:=PCGroup([4,-2,-2,-3,-37,54,6915]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^37=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D37 in TeX

׿
×
𝔽