extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC14).1(C2xQ8) = D7xC8.C4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 112 | 4 | (C2xC14).1(C2xQ8) | 448,426 |
(C2xC14).2(C2xQ8) = M4(2).25D14 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 112 | 4 | (C2xC14).2(C2xQ8) | 448,427 |
(C2xC14).3(C2xQ8) = D4:5Dic14 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).3(C2xQ8) | 448,992 |
(C2xC14).4(C2xQ8) = D4:6Dic14 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).4(C2xQ8) | 448,996 |
(C2xC14).5(C2xQ8) = (Q8xDic7):C2 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).5(C2xQ8) | 448,1075 |
(C2xC14).6(C2xQ8) = C14.752- 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).6(C2xQ8) | 448,1076 |
(C2xC14).7(C2xQ8) = C14.512+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 112 | | (C2xC14).7(C2xQ8) | 448,1087 |
(C2xC14).8(C2xQ8) = C14.1182+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).8(C2xQ8) | 448,1088 |
(C2xC14).9(C2xQ8) = C14.522+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).9(C2xQ8) | 448,1089 |
(C2xC14).10(C2xQ8) = C2xC28.53D4 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).10(C2xQ8) | 448,657 |
(C2xC14).11(C2xQ8) = C23.Dic14 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC14 | 112 | 4 | (C2xC14).11(C2xQ8) | 448,658 |
(C2xC14).12(C2xQ8) = C42.88D14 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).12(C2xQ8) | 448,970 |
(C2xC14).13(C2xQ8) = C42.90D14 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC14 | 224 | | (C2xC14).13(C2xQ8) | 448,972 |
(C2xC14).14(C2xQ8) = C14xC8.C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).14(C2xQ8) | 448,837 |
(C2xC14).15(C2xQ8) = C7xM4(2).C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 112 | 4 | (C2xC14).15(C2xQ8) | 448,838 |
(C2xC14).16(C2xQ8) = C7xC23.37C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).16(C2xQ8) | 448,1316 |
(C2xC14).17(C2xQ8) = C7xC23:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 112 | | (C2xC14).17(C2xQ8) | 448,1326 |
(C2xC14).18(C2xQ8) = C7xC23.41C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).18(C2xQ8) | 448,1327 |
(C2xC14).19(C2xQ8) = C4:Dic7:8C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).19(C2xQ8) | 448,188 |
(C2xC14).20(C2xQ8) = C14.(C4xD4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).20(C2xQ8) | 448,189 |
(C2xC14).21(C2xQ8) = (C2xC4).Dic14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).21(C2xQ8) | 448,194 |
(C2xC14).22(C2xQ8) = C14.(C4:Q8) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).22(C2xQ8) | 448,195 |
(C2xC14).23(C2xQ8) = C28:4(C4:C4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).23(C2xQ8) | 448,462 |
(C2xC14).24(C2xQ8) = (C2xC28):10Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).24(C2xQ8) | 448,463 |
(C2xC14).25(C2xQ8) = C4xDic7:C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).25(C2xQ8) | 448,465 |
(C2xC14).26(C2xQ8) = (C2xC42).D7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).26(C2xQ8) | 448,467 |
(C2xC14).27(C2xQ8) = C4xC4:Dic7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).27(C2xQ8) | 448,468 |
(C2xC14).28(C2xQ8) = C42:8Dic7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).28(C2xQ8) | 448,469 |
(C2xC14).29(C2xQ8) = C42:9Dic7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).29(C2xQ8) | 448,470 |
(C2xC14).30(C2xQ8) = C24.44D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).30(C2xQ8) | 448,476 |
(C2xC14).31(C2xQ8) = C24.46D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).31(C2xQ8) | 448,480 |
(C2xC14).32(C2xQ8) = C23:Dic14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).32(C2xQ8) | 448,481 |
(C2xC14).33(C2xQ8) = C24.6D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).33(C2xQ8) | 448,482 |
(C2xC14).34(C2xQ8) = C24.7D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).34(C2xQ8) | 448,483 |
(C2xC14).35(C2xQ8) = C24.47D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).35(C2xQ8) | 448,484 |
(C2xC14).36(C2xQ8) = (C4xDic7):9C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).36(C2xQ8) | 448,511 |
(C2xC14).37(C2xQ8) = (C2xC28).54D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).37(C2xQ8) | 448,518 |
(C2xC14).38(C2xQ8) = C4:(C4:Dic7) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).38(C2xQ8) | 448,519 |
(C2xC14).39(C2xQ8) = (C2xC28).55D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).39(C2xQ8) | 448,520 |
(C2xC14).40(C2xQ8) = C2xC56.C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).40(C2xQ8) | 448,641 |
(C2xC14).41(C2xQ8) = M4(2).Dic7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 112 | 4 | (C2xC14).41(C2xQ8) | 448,659 |
(C2xC14).42(C2xQ8) = C2xC14.C42 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).42(C2xQ8) | 448,742 |
(C2xC14).43(C2xQ8) = C24.62D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).43(C2xQ8) | 448,744 |
(C2xC14).44(C2xQ8) = C23.27D28 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).44(C2xQ8) | 448,746 |
(C2xC14).45(C2xQ8) = C2xC4xDic14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).45(C2xQ8) | 448,920 |
(C2xC14).46(C2xQ8) = C2xC28:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).46(C2xQ8) | 448,921 |
(C2xC14).47(C2xQ8) = C2xC28.6Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).47(C2xQ8) | 448,922 |
(C2xC14).48(C2xQ8) = C42.274D14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).48(C2xQ8) | 448,923 |
(C2xC14).49(C2xQ8) = C23:2Dic14 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 112 | | (C2xC14).49(C2xQ8) | 448,936 |
(C2xC14).50(C2xQ8) = C2xC28:Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).50(C2xQ8) | 448,950 |
(C2xC14).51(C2xQ8) = C2xC28.3Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).51(C2xQ8) | 448,952 |
(C2xC14).52(C2xQ8) = C14.72+ 1+4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).52(C2xQ8) | 448,953 |
(C2xC14).53(C2xQ8) = C22xDic7:C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).53(C2xQ8) | 448,1236 |
(C2xC14).54(C2xQ8) = C22xC4:Dic7 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).54(C2xQ8) | 448,1238 |
(C2xC14).55(C2xQ8) = C7xD4:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).55(C2xQ8) | 448,1337 |
(C2xC14).56(C2xQ8) = (C2xC28):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).56(C2xQ8) | 448,180 |
(C2xC14).57(C2xQ8) = C14.(C4xQ8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).57(C2xQ8) | 448,181 |
(C2xC14).58(C2xQ8) = Dic7:C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).58(C2xQ8) | 448,183 |
(C2xC14).59(C2xQ8) = C7:(C42:8C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).59(C2xQ8) | 448,184 |
(C2xC14).60(C2xQ8) = Dic7:C4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).60(C2xQ8) | 448,186 |
(C2xC14).61(C2xQ8) = C4:Dic7:7C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).61(C2xQ8) | 448,187 |
(C2xC14).62(C2xQ8) = (C2xDic7):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).62(C2xQ8) | 448,190 |
(C2xC14).63(C2xQ8) = C2.(C28:Q8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).63(C2xQ8) | 448,191 |
(C2xC14).64(C2xQ8) = (C2xDic7).Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).64(C2xQ8) | 448,192 |
(C2xC14).65(C2xQ8) = (C2xC28).28D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).65(C2xQ8) | 448,193 |
(C2xC14).66(C2xQ8) = D7xC2.C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).66(C2xQ8) | 448,197 |
(C2xC14).67(C2xQ8) = D14:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).67(C2xQ8) | 448,201 |
(C2xC14).68(C2xQ8) = D14:C4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).68(C2xQ8) | 448,202 |
(C2xC14).69(C2xQ8) = (C2xC4).20D28 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).69(C2xQ8) | 448,207 |
(C2xC14).70(C2xQ8) = (C22xD7).Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).70(C2xQ8) | 448,210 |
(C2xC14).71(C2xQ8) = (C2xC28).33D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).71(C2xQ8) | 448,211 |
(C2xC14).72(C2xQ8) = Dic7:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).72(C2xQ8) | 448,506 |
(C2xC14).73(C2xQ8) = C28:(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).73(C2xQ8) | 448,507 |
(C2xC14).74(C2xQ8) = (C2xDic7):6Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).74(C2xQ8) | 448,508 |
(C2xC14).75(C2xQ8) = C4:C4xDic7 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).75(C2xQ8) | 448,509 |
(C2xC14).76(C2xQ8) = (C4xDic7):8C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).76(C2xQ8) | 448,510 |
(C2xC14).77(C2xQ8) = C22.23(Q8xD7) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).77(C2xQ8) | 448,512 |
(C2xC14).78(C2xQ8) = (C2xC4):Dic14 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).78(C2xQ8) | 448,513 |
(C2xC14).79(C2xQ8) = (C2xC28).287D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).79(C2xQ8) | 448,514 |
(C2xC14).80(C2xQ8) = C4:C4:5Dic7 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).80(C2xQ8) | 448,515 |
(C2xC14).81(C2xQ8) = (C2xC28).288D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).81(C2xQ8) | 448,516 |
(C2xC14).82(C2xQ8) = (C2xC4).44D28 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).82(C2xQ8) | 448,517 |
(C2xC14).83(C2xQ8) = C4:(D14:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).83(C2xQ8) | 448,521 |
(C2xC14).84(C2xQ8) = D14:C4:6C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).84(C2xQ8) | 448,523 |
(C2xC14).85(C2xQ8) = (C2xC28).289D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).85(C2xQ8) | 448,526 |
(C2xC14).86(C2xQ8) = (C2xC4).45D28 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).86(C2xQ8) | 448,528 |
(C2xC14).87(C2xQ8) = C14.C22wrC2 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).87(C2xQ8) | 448,763 |
(C2xC14).88(C2xQ8) = (Q8xC14):7C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).88(C2xQ8) | 448,764 |
(C2xC14).89(C2xQ8) = (C22xQ8):D7 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).89(C2xQ8) | 448,765 |
(C2xC14).90(C2xQ8) = C2xDic7:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).90(C2xQ8) | 448,949 |
(C2xC14).91(C2xQ8) = C2xDic7.Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).91(C2xQ8) | 448,951 |
(C2xC14).92(C2xQ8) = C2xD7xC4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).92(C2xQ8) | 448,954 |
(C2xC14).93(C2xQ8) = C2xD14:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).93(C2xQ8) | 448,961 |
(C2xC14).94(C2xQ8) = C2xD14:2Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).94(C2xQ8) | 448,962 |
(C2xC14).95(C2xQ8) = C14.102+ 1+4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).95(C2xQ8) | 448,964 |
(C2xC14).96(C2xQ8) = C2xDic7:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).96(C2xQ8) | 448,1263 |
(C2xC14).97(C2xQ8) = C2xQ8xDic7 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 448 | | (C2xC14).97(C2xQ8) | 448,1264 |
(C2xC14).98(C2xQ8) = C2xD14:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC14 | 224 | | (C2xC14).98(C2xQ8) | 448,1266 |
(C2xC14).99(C2xQ8) = C14xC2.C42 | central extension (φ=1) | 448 | | (C2xC14).99(C2xQ8) | 448,783 |
(C2xC14).100(C2xQ8) = C4:C4xC28 | central extension (φ=1) | 448 | | (C2xC14).100(C2xQ8) | 448,786 |
(C2xC14).101(C2xQ8) = C7xC23.7Q8 | central extension (φ=1) | 224 | | (C2xC14).101(C2xQ8) | 448,788 |
(C2xC14).102(C2xQ8) = C7xC42:8C4 | central extension (φ=1) | 448 | | (C2xC14).102(C2xQ8) | 448,790 |
(C2xC14).103(C2xQ8) = C7xC42:9C4 | central extension (φ=1) | 448 | | (C2xC14).103(C2xQ8) | 448,792 |
(C2xC14).104(C2xQ8) = C7xC23.8Q8 | central extension (φ=1) | 224 | | (C2xC14).104(C2xQ8) | 448,793 |
(C2xC14).105(C2xQ8) = C7xC23.63C23 | central extension (φ=1) | 448 | | (C2xC14).105(C2xQ8) | 448,795 |
(C2xC14).106(C2xQ8) = C7xC23.65C23 | central extension (φ=1) | 448 | | (C2xC14).106(C2xQ8) | 448,797 |
(C2xC14).107(C2xQ8) = C7xC23.67C23 | central extension (φ=1) | 448 | | (C2xC14).107(C2xQ8) | 448,799 |
(C2xC14).108(C2xQ8) = C7xC23:Q8 | central extension (φ=1) | 224 | | (C2xC14).108(C2xQ8) | 448,801 |
(C2xC14).109(C2xQ8) = C7xC23.78C23 | central extension (φ=1) | 448 | | (C2xC14).109(C2xQ8) | 448,803 |
(C2xC14).110(C2xQ8) = C7xC23.Q8 | central extension (φ=1) | 224 | | (C2xC14).110(C2xQ8) | 448,804 |
(C2xC14).111(C2xQ8) = C7xC23.81C23 | central extension (φ=1) | 448 | | (C2xC14).111(C2xQ8) | 448,806 |
(C2xC14).112(C2xQ8) = C7xC23.4Q8 | central extension (φ=1) | 224 | | (C2xC14).112(C2xQ8) | 448,807 |
(C2xC14).113(C2xQ8) = C7xC23.83C23 | central extension (φ=1) | 448 | | (C2xC14).113(C2xQ8) | 448,808 |
(C2xC14).114(C2xQ8) = C4:C4xC2xC14 | central extension (φ=1) | 448 | | (C2xC14).114(C2xQ8) | 448,1296 |
(C2xC14).115(C2xQ8) = Q8xC2xC28 | central extension (φ=1) | 448 | | (C2xC14).115(C2xQ8) | 448,1299 |
(C2xC14).116(C2xQ8) = C14xC42.C2 | central extension (φ=1) | 448 | | (C2xC14).116(C2xQ8) | 448,1310 |
(C2xC14).117(C2xQ8) = C14xC4:Q8 | central extension (φ=1) | 448 | | (C2xC14).117(C2xQ8) | 448,1314 |