Copied to
clipboard

G = M4(2).Dic7order 448 = 26·7

1st non-split extension by M4(2) of Dic7 acting via Dic7/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.7Dic14, M4(2).1Dic7, C56.6(C2×C4), (C2×C8).76D14, C4.87(C2×D28), C28.22(C4⋊C4), (C2×C28).29Q8, C8.4(C2×Dic7), (C2×C28).169D4, C28.305(C2×D4), (C2×C4).150D28, C4.7(C4⋊Dic7), C56.C413C2, (C2×C56).62C22, (C2×C4).17Dic14, (C7×M4(2)).1C4, (C2×M4(2)).2D7, (C22×C14).17Q8, C73(M4(2).C4), (C2×C28).796C23, C28.174(C22×C4), (C22×C4).135D14, (C14×M4(2)).2C2, C22.7(C4⋊Dic7), C22.9(C2×Dic14), C4.28(C22×Dic7), C4.Dic7.36C22, (C22×C28).184C22, C14.53(C2×C4⋊C4), C2.15(C2×C4⋊Dic7), (C2×C14).41(C2×Q8), (C2×C14).17(C4⋊C4), (C2×C28).104(C2×C4), (C2×C4).22(C2×Dic7), (C2×C4).721(C22×D7), (C2×C4.Dic7).25C2, SmallGroup(448,659)

Series: Derived Chief Lower central Upper central

C1C28 — M4(2).Dic7
C1C7C14C28C2×C28C4.Dic7C2×C4.Dic7 — M4(2).Dic7
C7C14C28 — M4(2).Dic7
C1C4C22×C4C2×M4(2)

Generators and relations for M4(2).Dic7
 G = < a,b,c,d | a8=b2=1, c14=a4, d2=a4c7, bab=a5, ac=ca, dad-1=a-1, bc=cb, bd=db, dcd-1=c13 >

Subgroups: 292 in 102 conjugacy classes, 67 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C14, C14, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C8.C4, C2×M4(2), C2×M4(2), C7⋊C8, C56, C2×C28, C2×C28, C22×C14, M4(2).C4, C2×C7⋊C8, C4.Dic7, C4.Dic7, C2×C56, C7×M4(2), C22×C28, C56.C4, C2×C4.Dic7, C14×M4(2), M4(2).Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic7, D14, C2×C4⋊C4, Dic14, D28, C2×Dic7, C22×D7, M4(2).C4, C4⋊Dic7, C2×Dic14, C2×D28, C22×Dic7, C2×C4⋊Dic7, M4(2).Dic7

Smallest permutation representation of M4(2).Dic7
On 112 points
Generators in S112
(1 35 22 56 15 49 8 42)(2 36 23 29 16 50 9 43)(3 37 24 30 17 51 10 44)(4 38 25 31 18 52 11 45)(5 39 26 32 19 53 12 46)(6 40 27 33 20 54 13 47)(7 41 28 34 21 55 14 48)(57 85 64 92 71 99 78 106)(58 86 65 93 72 100 79 107)(59 87 66 94 73 101 80 108)(60 88 67 95 74 102 81 109)(61 89 68 96 75 103 82 110)(62 90 69 97 76 104 83 111)(63 91 70 98 77 105 84 112)
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 57 22 78 15 71 8 64)(2 70 23 63 16 84 9 77)(3 83 24 76 17 69 10 62)(4 68 25 61 18 82 11 75)(5 81 26 74 19 67 12 60)(6 66 27 59 20 80 13 73)(7 79 28 72 21 65 14 58)(29 112 50 105 43 98 36 91)(30 97 51 90 44 111 37 104)(31 110 52 103 45 96 38 89)(32 95 53 88 46 109 39 102)(33 108 54 101 47 94 40 87)(34 93 55 86 48 107 41 100)(35 106 56 99 49 92 42 85)

G:=sub<Sym(112)| (1,35,22,56,15,49,8,42)(2,36,23,29,16,50,9,43)(3,37,24,30,17,51,10,44)(4,38,25,31,18,52,11,45)(5,39,26,32,19,53,12,46)(6,40,27,33,20,54,13,47)(7,41,28,34,21,55,14,48)(57,85,64,92,71,99,78,106)(58,86,65,93,72,100,79,107)(59,87,66,94,73,101,80,108)(60,88,67,95,74,102,81,109)(61,89,68,96,75,103,82,110)(62,90,69,97,76,104,83,111)(63,91,70,98,77,105,84,112), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,22,78,15,71,8,64)(2,70,23,63,16,84,9,77)(3,83,24,76,17,69,10,62)(4,68,25,61,18,82,11,75)(5,81,26,74,19,67,12,60)(6,66,27,59,20,80,13,73)(7,79,28,72,21,65,14,58)(29,112,50,105,43,98,36,91)(30,97,51,90,44,111,37,104)(31,110,52,103,45,96,38,89)(32,95,53,88,46,109,39,102)(33,108,54,101,47,94,40,87)(34,93,55,86,48,107,41,100)(35,106,56,99,49,92,42,85)>;

G:=Group( (1,35,22,56,15,49,8,42)(2,36,23,29,16,50,9,43)(3,37,24,30,17,51,10,44)(4,38,25,31,18,52,11,45)(5,39,26,32,19,53,12,46)(6,40,27,33,20,54,13,47)(7,41,28,34,21,55,14,48)(57,85,64,92,71,99,78,106)(58,86,65,93,72,100,79,107)(59,87,66,94,73,101,80,108)(60,88,67,95,74,102,81,109)(61,89,68,96,75,103,82,110)(62,90,69,97,76,104,83,111)(63,91,70,98,77,105,84,112), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,22,78,15,71,8,64)(2,70,23,63,16,84,9,77)(3,83,24,76,17,69,10,62)(4,68,25,61,18,82,11,75)(5,81,26,74,19,67,12,60)(6,66,27,59,20,80,13,73)(7,79,28,72,21,65,14,58)(29,112,50,105,43,98,36,91)(30,97,51,90,44,111,37,104)(31,110,52,103,45,96,38,89)(32,95,53,88,46,109,39,102)(33,108,54,101,47,94,40,87)(34,93,55,86,48,107,41,100)(35,106,56,99,49,92,42,85) );

G=PermutationGroup([[(1,35,22,56,15,49,8,42),(2,36,23,29,16,50,9,43),(3,37,24,30,17,51,10,44),(4,38,25,31,18,52,11,45),(5,39,26,32,19,53,12,46),(6,40,27,33,20,54,13,47),(7,41,28,34,21,55,14,48),(57,85,64,92,71,99,78,106),(58,86,65,93,72,100,79,107),(59,87,66,94,73,101,80,108),(60,88,67,95,74,102,81,109),(61,89,68,96,75,103,82,110),(62,90,69,97,76,104,83,111),(63,91,70,98,77,105,84,112)], [(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,57,22,78,15,71,8,64),(2,70,23,63,16,84,9,77),(3,83,24,76,17,69,10,62),(4,68,25,61,18,82,11,75),(5,81,26,74,19,67,12,60),(6,66,27,59,20,80,13,73),(7,79,28,72,21,65,14,58),(29,112,50,105,43,98,36,91),(30,97,51,90,44,111,37,104),(31,110,52,103,45,96,38,89),(32,95,53,88,46,109,39,102),(33,108,54,101,47,94,40,87),(34,93,55,86,48,107,41,100),(35,106,56,99,49,92,42,85)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D8E···8L14A···14I14J···14O28A···28L28M···28R56A···56X
order122224444477788888···814···1414···1428···2828···2856···56
size1122211222222444428···282···24···42···24···44···4

82 irreducible representations

dim11111222222222244
type+++++--++-+-+-
imageC1C2C2C2C4D4Q8Q8D7D14Dic7D14Dic14D28Dic14M4(2).C4M4(2).Dic7
kernelM4(2).Dic7C56.C4C2×C4.Dic7C14×M4(2)C7×M4(2)C2×C28C2×C28C22×C14C2×M4(2)C2×C8M4(2)C22×C4C2×C4C2×C4C23C7C1
# reps14218211361236126212

Matrix representation of M4(2).Dic7 in GL4(𝔽113) generated by

0100
98000
00015
0010
,
1000
011200
0010
000112
,
60000
06000
00320
00032
,
0010
0001
98000
09800
G:=sub<GL(4,GF(113))| [0,98,0,0,1,0,0,0,0,0,0,1,0,0,15,0],[1,0,0,0,0,112,0,0,0,0,1,0,0,0,0,112],[60,0,0,0,0,60,0,0,0,0,32,0,0,0,0,32],[0,0,98,0,0,0,0,98,1,0,0,0,0,1,0,0] >;

M4(2).Dic7 in GAP, Magma, Sage, TeX

M_4(2).{\rm Dic}_7
% in TeX

G:=Group("M4(2).Dic7");
// GroupNames label

G:=SmallGroup(448,659);
// by ID

G=gap.SmallGroup(448,659);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,422,387,100,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^14=a^4,d^2=a^4*c^7,b*a*b=a^5,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽