Copied to
clipboard

G = M4(2).25D14order 448 = 26·7

8th non-split extension by M4(2) of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).25D14, C8.10(C4×D7), C56.28(C2×C4), (C4×D7).50D4, C8.C43D7, (C2×C8).68D14, C8⋊D7.1C4, C4.211(D4×D7), C56.C47C2, D14.7(C4⋊C4), C28.370(C2×D4), C22.4(Q8×D7), (C2×Dic7).4Q8, (C22×D7).3Q8, C28.53D48C2, Dic7.9(C4⋊C4), (C2×C56).40C22, C28.53(C22×C4), (D7×M4(2)).3C2, C71(M4(2).C4), (C2×C28).309C23, C4.Dic7.13C22, (C7×M4(2)).19C22, C7⋊C8.3(C2×C4), C4.83(C2×C4×D7), C2.18(D7×C4⋊C4), C14.17(C2×C4⋊C4), (C4×D7).8(C2×C4), (C2×C14).2(C2×Q8), (C7×C8.C4)⋊3C2, (C2×C8⋊D7).1C2, (C2×C7⋊C8).77C22, (C2×C4×D7).43C22, (C2×C4).412(C22×D7), SmallGroup(448,427)

Series: Derived Chief Lower central Upper central

C1C28 — M4(2).25D14
C1C7C14C28C2×C28C2×C4×D7C2×C8⋊D7 — M4(2).25D14
C7C14C28 — M4(2).25D14
C1C4C2×C4C8.C4

Generators and relations for M4(2).25D14
 G = < a,b,c,d | a8=b2=1, c14=d2=a6b, bab=a5, cac-1=a-1b, dad-1=a3b, bc=cb, bd=db, dcd-1=c13 >

Subgroups: 412 in 102 conjugacy classes, 51 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), C22×C4, Dic7, C28, D14, D14, C2×C14, C8.C4, C8.C4, C2×M4(2), C7⋊C8, C7⋊C8, C56, C56, C4×D7, C2×Dic7, C2×C28, C22×D7, M4(2).C4, C8×D7, C8⋊D7, C8⋊D7, C2×C7⋊C8, C4.Dic7, C2×C56, C7×M4(2), C2×C4×D7, C56.C4, C28.53D4, C7×C8.C4, C2×C8⋊D7, D7×M4(2), M4(2).25D14
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, D14, C2×C4⋊C4, C4×D7, C22×D7, M4(2).C4, C2×C4×D7, D4×D7, Q8×D7, D7×C4⋊C4, M4(2).25D14

Smallest permutation representation of M4(2).25D14
On 112 points
Generators in S112
(1 76 43 90 29 104 15 62)(2 91 44 105 30 63 16 77)(3 106 45 64 31 78 17 92)(4 65 46 79 32 93 18 107)(5 80 47 94 33 108 19 66)(6 95 48 109 34 67 20 81)(7 110 49 68 35 82 21 96)(8 69 50 83 36 97 22 111)(9 84 51 98 37 112 23 70)(10 99 52 57 38 71 24 85)(11 58 53 72 39 86 25 100)(12 73 54 87 40 101 26 59)(13 88 55 102 41 60 27 74)(14 103 56 61 42 75 28 89)
(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 42 15 56 29 14 43 28)(2 55 16 13 30 27 44 41)(3 12 17 26 31 40 45 54)(4 25 18 39 32 53 46 11)(5 38 19 52 33 10 47 24)(6 51 20 9 34 23 48 37)(7 8 21 22 35 36 49 50)(57 66 71 80 85 94 99 108)(58 79 72 93 86 107 100 65)(59 92 73 106 87 64 101 78)(60 105 74 63 88 77 102 91)(61 62 75 76 89 90 103 104)(67 84 81 98 95 112 109 70)(68 97 82 111 96 69 110 83)

G:=sub<Sym(112)| (1,76,43,90,29,104,15,62)(2,91,44,105,30,63,16,77)(3,106,45,64,31,78,17,92)(4,65,46,79,32,93,18,107)(5,80,47,94,33,108,19,66)(6,95,48,109,34,67,20,81)(7,110,49,68,35,82,21,96)(8,69,50,83,36,97,22,111)(9,84,51,98,37,112,23,70)(10,99,52,57,38,71,24,85)(11,58,53,72,39,86,25,100)(12,73,54,87,40,101,26,59)(13,88,55,102,41,60,27,74)(14,103,56,61,42,75,28,89), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42,15,56,29,14,43,28)(2,55,16,13,30,27,44,41)(3,12,17,26,31,40,45,54)(4,25,18,39,32,53,46,11)(5,38,19,52,33,10,47,24)(6,51,20,9,34,23,48,37)(7,8,21,22,35,36,49,50)(57,66,71,80,85,94,99,108)(58,79,72,93,86,107,100,65)(59,92,73,106,87,64,101,78)(60,105,74,63,88,77,102,91)(61,62,75,76,89,90,103,104)(67,84,81,98,95,112,109,70)(68,97,82,111,96,69,110,83)>;

G:=Group( (1,76,43,90,29,104,15,62)(2,91,44,105,30,63,16,77)(3,106,45,64,31,78,17,92)(4,65,46,79,32,93,18,107)(5,80,47,94,33,108,19,66)(6,95,48,109,34,67,20,81)(7,110,49,68,35,82,21,96)(8,69,50,83,36,97,22,111)(9,84,51,98,37,112,23,70)(10,99,52,57,38,71,24,85)(11,58,53,72,39,86,25,100)(12,73,54,87,40,101,26,59)(13,88,55,102,41,60,27,74)(14,103,56,61,42,75,28,89), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42,15,56,29,14,43,28)(2,55,16,13,30,27,44,41)(3,12,17,26,31,40,45,54)(4,25,18,39,32,53,46,11)(5,38,19,52,33,10,47,24)(6,51,20,9,34,23,48,37)(7,8,21,22,35,36,49,50)(57,66,71,80,85,94,99,108)(58,79,72,93,86,107,100,65)(59,92,73,106,87,64,101,78)(60,105,74,63,88,77,102,91)(61,62,75,76,89,90,103,104)(67,84,81,98,95,112,109,70)(68,97,82,111,96,69,110,83) );

G=PermutationGroup([[(1,76,43,90,29,104,15,62),(2,91,44,105,30,63,16,77),(3,106,45,64,31,78,17,92),(4,65,46,79,32,93,18,107),(5,80,47,94,33,108,19,66),(6,95,48,109,34,67,20,81),(7,110,49,68,35,82,21,96),(8,69,50,83,36,97,22,111),(9,84,51,98,37,112,23,70),(10,99,52,57,38,71,24,85),(11,58,53,72,39,86,25,100),(12,73,54,87,40,101,26,59),(13,88,55,102,41,60,27,74),(14,103,56,61,42,75,28,89)], [(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,42,15,56,29,14,43,28),(2,55,16,13,30,27,44,41),(3,12,17,26,31,40,45,54),(4,25,18,39,32,53,46,11),(5,38,19,52,33,10,47,24),(6,51,20,9,34,23,48,37),(7,8,21,22,35,36,49,50),(57,66,71,80,85,94,99,108),(58,79,72,93,86,107,100,65),(59,92,73,106,87,64,101,78),(60,105,74,63,88,77,102,91),(61,62,75,76,89,90,103,104),(67,84,81,98,95,112,109,70),(68,97,82,111,96,69,110,83)]])

64 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A···8F8G···8L14A14B14C14D14E14F28A···28F28G28H28I56A···56L56M···56X
order12222444447778···88···814141414141428···2828282856···5656···56
size112141411214142224···428···282224442···24444···48···8

64 irreducible representations

dim111111122222224444
type+++++++--++++-
imageC1C2C2C2C2C2C4D4Q8Q8D7D14D14C4×D7M4(2).C4D4×D7Q8×D7M4(2).25D14
kernelM4(2).25D14C56.C4C28.53D4C7×C8.C4C2×C8⋊D7D7×M4(2)C8⋊D7C4×D7C2×Dic7C22×D7C8.C4C2×C8M4(2)C8C7C4C22C1
# reps11211282113361223312

Matrix representation of M4(2).25D14 in GL4(𝔽113) generated by

004313
0010070
7010000
134300
,
1000
0100
001120
000112
,
307500
383800
0025
00108108
,
753000
383800
0052
00108108
G:=sub<GL(4,GF(113))| [0,0,70,13,0,0,100,43,43,100,0,0,13,70,0,0],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[30,38,0,0,75,38,0,0,0,0,2,108,0,0,5,108],[75,38,0,0,30,38,0,0,0,0,5,108,0,0,2,108] >;

M4(2).25D14 in GAP, Magma, Sage, TeX

M_4(2)._{25}D_{14}
% in TeX

G:=Group("M4(2).25D14");
// GroupNames label

G:=SmallGroup(448,427);
// by ID

G=gap.SmallGroup(448,427);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,120,219,58,136,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^14=d^2=a^6*b,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a^3*b,b*c=c*b,b*d=d*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽