Copied to
clipboard

G = C7×M4(2).C4order 448 = 26·7

Direct product of C7 and M4(2).C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×M4(2).C4, M4(2).1C28, C8.4(C2×C28), C56.45(C2×C4), C4.78(D4×C14), C28.65(C4⋊C4), (C2×C28).44Q8, C8.C43C14, (C2×C28).523D4, C28.483(C2×D4), C23.5(C7×Q8), C22.2(Q8×C14), (C22×C14).5Q8, C4.29(C22×C28), (C7×M4(2)).3C4, C28.187(C22×C4), (C2×C56).270C22, (C2×C28).903C23, (C2×M4(2)).2C14, (C14×M4(2)).34C2, M4(2).10(C2×C14), (C22×C28).415C22, (C7×M4(2)).44C22, C4.16(C7×C4⋊C4), C2.16(C14×C4⋊C4), C14.72(C2×C4⋊C4), (C2×C4).7(C7×Q8), (C2×C8).17(C2×C14), (C2×C4).26(C2×C28), (C2×C4).126(C7×D4), C22.12(C7×C4⋊C4), (C2×C14).15(C2×Q8), (C7×C8.C4)⋊12C2, (C2×C14).28(C4⋊C4), (C2×C28).199(C2×C4), (C2×C4).78(C22×C14), (C22×C4).34(C2×C14), SmallGroup(448,838)

Series: Derived Chief Lower central Upper central

C1C4 — C7×M4(2).C4
C1C2C4C2×C4C2×C28C7×M4(2)C7×C8.C4 — C7×M4(2).C4
C1C2C4 — C7×M4(2).C4
C1C28C22×C28 — C7×M4(2).C4

Generators and relations for C7×M4(2).C4
 G = < a,b,c,d | a7=b8=c2=1, d4=b4, ab=ba, ac=ca, ad=da, cbc=b5, dbd-1=b-1, dcd-1=b4c >

Subgroups: 130 in 102 conjugacy classes, 78 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C14, C14, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C8.C4, C2×M4(2), C2×M4(2), C56, C56, C2×C28, C2×C28, C22×C14, M4(2).C4, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C7×C8.C4, C14×M4(2), C14×M4(2), C7×M4(2).C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, Q8, C23, C14, C4⋊C4, C22×C4, C2×D4, C2×Q8, C28, C2×C14, C2×C4⋊C4, C2×C28, C7×D4, C7×Q8, C22×C14, M4(2).C4, C7×C4⋊C4, C22×C28, D4×C14, Q8×C14, C14×C4⋊C4, C7×M4(2).C4

Smallest permutation representation of C7×M4(2).C4
On 112 points
Generators in S112
(1 61 18 49 39 41 10)(2 62 19 50 40 42 11)(3 63 20 51 33 43 12)(4 64 21 52 34 44 13)(5 57 22 53 35 45 14)(6 58 23 54 36 46 15)(7 59 24 55 37 47 16)(8 60 17 56 38 48 9)(25 79 108 91 88 71 100)(26 80 109 92 81 72 101)(27 73 110 93 82 65 102)(28 74 111 94 83 66 103)(29 75 112 95 84 67 104)(30 76 105 96 85 68 97)(31 77 106 89 86 69 98)(32 78 107 90 87 70 99)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 5)(3 7)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(65 69)(67 71)(73 77)(75 79)(82 86)(84 88)(89 93)(91 95)(98 102)(100 104)(106 110)(108 112)
(1 97 7 99 5 101 3 103)(2 104 8 98 6 100 4 102)(9 69 15 71 13 65 11 67)(10 68 16 70 14 72 12 66)(17 77 23 79 21 73 19 75)(18 76 24 78 22 80 20 74)(25 64 27 62 29 60 31 58)(26 63 28 61 30 59 32 57)(33 94 39 96 37 90 35 92)(34 93 40 95 38 89 36 91)(41 85 47 87 45 81 43 83)(42 84 48 86 46 88 44 82)(49 105 55 107 53 109 51 111)(50 112 56 106 54 108 52 110)

G:=sub<Sym(112)| (1,61,18,49,39,41,10)(2,62,19,50,40,42,11)(3,63,20,51,33,43,12)(4,64,21,52,34,44,13)(5,57,22,53,35,45,14)(6,58,23,54,36,46,15)(7,59,24,55,37,47,16)(8,60,17,56,38,48,9)(25,79,108,91,88,71,100)(26,80,109,92,81,72,101)(27,73,110,93,82,65,102)(28,74,111,94,83,66,103)(29,75,112,95,84,67,104)(30,76,105,96,85,68,97)(31,77,106,89,86,69,98)(32,78,107,90,87,70,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79)(82,86)(84,88)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112), (1,97,7,99,5,101,3,103)(2,104,8,98,6,100,4,102)(9,69,15,71,13,65,11,67)(10,68,16,70,14,72,12,66)(17,77,23,79,21,73,19,75)(18,76,24,78,22,80,20,74)(25,64,27,62,29,60,31,58)(26,63,28,61,30,59,32,57)(33,94,39,96,37,90,35,92)(34,93,40,95,38,89,36,91)(41,85,47,87,45,81,43,83)(42,84,48,86,46,88,44,82)(49,105,55,107,53,109,51,111)(50,112,56,106,54,108,52,110)>;

G:=Group( (1,61,18,49,39,41,10)(2,62,19,50,40,42,11)(3,63,20,51,33,43,12)(4,64,21,52,34,44,13)(5,57,22,53,35,45,14)(6,58,23,54,36,46,15)(7,59,24,55,37,47,16)(8,60,17,56,38,48,9)(25,79,108,91,88,71,100)(26,80,109,92,81,72,101)(27,73,110,93,82,65,102)(28,74,111,94,83,66,103)(29,75,112,95,84,67,104)(30,76,105,96,85,68,97)(31,77,106,89,86,69,98)(32,78,107,90,87,70,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79)(82,86)(84,88)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112), (1,97,7,99,5,101,3,103)(2,104,8,98,6,100,4,102)(9,69,15,71,13,65,11,67)(10,68,16,70,14,72,12,66)(17,77,23,79,21,73,19,75)(18,76,24,78,22,80,20,74)(25,64,27,62,29,60,31,58)(26,63,28,61,30,59,32,57)(33,94,39,96,37,90,35,92)(34,93,40,95,38,89,36,91)(41,85,47,87,45,81,43,83)(42,84,48,86,46,88,44,82)(49,105,55,107,53,109,51,111)(50,112,56,106,54,108,52,110) );

G=PermutationGroup([[(1,61,18,49,39,41,10),(2,62,19,50,40,42,11),(3,63,20,51,33,43,12),(4,64,21,52,34,44,13),(5,57,22,53,35,45,14),(6,58,23,54,36,46,15),(7,59,24,55,37,47,16),(8,60,17,56,38,48,9),(25,79,108,91,88,71,100),(26,80,109,92,81,72,101),(27,73,110,93,82,65,102),(28,74,111,94,83,66,103),(29,75,112,95,84,67,104),(30,76,105,96,85,68,97),(31,77,106,89,86,69,98),(32,78,107,90,87,70,99)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,5),(3,7),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(65,69),(67,71),(73,77),(75,79),(82,86),(84,88),(89,93),(91,95),(98,102),(100,104),(106,110),(108,112)], [(1,97,7,99,5,101,3,103),(2,104,8,98,6,100,4,102),(9,69,15,71,13,65,11,67),(10,68,16,70,14,72,12,66),(17,77,23,79,21,73,19,75),(18,76,24,78,22,80,20,74),(25,64,27,62,29,60,31,58),(26,63,28,61,30,59,32,57),(33,94,39,96,37,90,35,92),(34,93,40,95,38,89,36,91),(41,85,47,87,45,81,43,83),(42,84,48,86,46,88,44,82),(49,105,55,107,53,109,51,111),(50,112,56,106,54,108,52,110)]])

154 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A···7F8A···8L14A···14F14G···14X28A···28L28M···28AD56A···56BT
order12222444447···78···814···1414···1428···2828···2856···56
size11222112221···14···41···12···21···12···24···4

154 irreducible representations

dim1111111122222244
type++++--
imageC1C2C2C4C7C14C14C28D4Q8Q8C7×D4C7×Q8C7×Q8M4(2).C4C7×M4(2).C4
kernelC7×M4(2).C4C7×C8.C4C14×M4(2)C7×M4(2)M4(2).C4C8.C4C2×M4(2)M4(2)C2×C28C2×C28C22×C14C2×C4C2×C4C23C7C1
# reps143862418482111266212

Matrix representation of C7×M4(2).C4 in GL4(𝔽113) generated by

109000
010900
001090
000109
,
748300
53900
1901111
91548112
,
112000
93100
0010
001112
,
0010
470661
98000
8698660
G:=sub<GL(4,GF(113))| [109,0,0,0,0,109,0,0,0,0,109,0,0,0,0,109],[74,5,19,91,83,39,0,54,0,0,1,8,0,0,111,112],[112,93,0,0,0,1,0,0,0,0,1,1,0,0,0,112],[0,47,98,86,0,0,0,98,1,66,0,66,0,1,0,0] >;

C7×M4(2).C4 in GAP, Magma, Sage, TeX

C_7\times M_4(2).C_4
% in TeX

G:=Group("C7xM4(2).C4");
// GroupNames label

G:=SmallGroup(448,838);
// by ID

G=gap.SmallGroup(448,838);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,784,813,400,2403,9804,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^2=1,d^4=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^5,d*b*d^-1=b^-1,d*c*d^-1=b^4*c>;
// generators/relations

׿
×
𝔽