Extensions 1→N→G→Q→1 with N=D4×D7 and Q=C4

Direct product G=N×Q with N=D4×D7 and Q=C4
dρLabelID
C4×D4×D7112C4xD4xD7448,997

Semidirect products G=N:Q with N=D4×D7 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×D7)⋊1C4 = D7×D4⋊C4φ: C4/C2C2 ⊆ Out D4×D7112(D4xD7):1C4448,303
(D4×D7)⋊2C4 = (D4×D7)⋊C4φ: C4/C2C2 ⊆ Out D4×D7112(D4xD7):2C4448,304
(D4×D7)⋊3C4 = D7×C4≀C2φ: C4/C2C2 ⊆ Out D4×D7564(D4xD7):3C4448,354
(D4×D7)⋊4C4 = C42⋊D14φ: C4/C2C2 ⊆ Out D4×D71124(D4xD7):4C4448,355
(D4×D7)⋊5C4 = C4211D14φ: C4/C2C2 ⊆ Out D4×D7112(D4xD7):5C4448,998

Non-split extensions G=N.Q with N=D4×D7 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×D7).C4 = C56.49C23φ: C4/C2C2 ⊆ Out D4×D71124(D4xD7).C4448,1203
(D4×D7).2C4 = D7×C8○D4φ: trivial image1124(D4xD7).2C4448,1202

׿
×
𝔽