Extensions 1→N→G→Q→1 with N=C15 and Q=C3×D5

Direct product G=N×Q with N=C15 and Q=C3×D5

Semidirect products G=N:Q with N=C15 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C151(C3×D5) = C3×C5⋊D15φ: C3×D5/C15C2 ⊆ Aut C15150C15:1(C3xD5)450,30
C152(C3×D5) = C32×C5⋊D5φ: C3×D5/C15C2 ⊆ Aut C15225C15:2(C3xD5)450,27
C153(C3×D5) = C15×D15φ: C3×D5/C15C2 ⊆ Aut C15302C15:3(C3xD5)450,29

Non-split extensions G=N.Q with N=C15 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C15.1(C3×D5) = C3×D75φ: C3×D5/C15C2 ⊆ Aut C151502C15.1(C3xD5)450,7
C15.2(C3×D5) = C9×D25φ: C3×D5/C15C2 ⊆ Aut C152252C15.2(C3xD5)450,2
C15.3(C3×D5) = C32×D25φ: C3×D5/C15C2 ⊆ Aut C15225C15.3(C3xD5)450,5
C15.4(C3×D5) = C9×C5⋊D5φ: C3×D5/C15C2 ⊆ Aut C15225C15.4(C3xD5)450,15
C15.5(C3×D5) = D5×C45central extension (φ=1)902C15.5(C3xD5)450,14