Copied to
clipboard

G = D5×C45order 450 = 2·32·52

Direct product of C45 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5×C45, C5⋊C90, C453C10, C523C18, C15.1C30, (C5×C45)⋊4C2, C3.(D5×C15), (D5×C15).C3, (C3×D5).C15, (C5×C15).3C6, C15.5(C3×D5), SmallGroup(450,14)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C45
C1C5C15C5×C15C5×C45 — D5×C45
C5 — D5×C45
C1C45

Generators and relations for D5×C45
 G = < a,b,c | a45=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
2C5
2C5
5C6
5C10
2C15
2C15
5C18
5C30
2C45
2C45
5C90

Smallest permutation representation of D5×C45
On 90 points
Generators in S90
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 19 37 10 28)(2 20 38 11 29)(3 21 39 12 30)(4 22 40 13 31)(5 23 41 14 32)(6 24 42 15 33)(7 25 43 16 34)(8 26 44 17 35)(9 27 45 18 36)(46 73 55 82 64)(47 74 56 83 65)(48 75 57 84 66)(49 76 58 85 67)(50 77 59 86 68)(51 78 60 87 69)(52 79 61 88 70)(53 80 62 89 71)(54 81 63 90 72)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(41 58)(42 59)(43 60)(44 61)(45 62)

G:=sub<Sym(90)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,19,37,10,28)(2,20,38,11,29)(3,21,39,12,30)(4,22,40,13,31)(5,23,41,14,32)(6,24,42,15,33)(7,25,43,16,34)(8,26,44,17,35)(9,27,45,18,36)(46,73,55,82,64)(47,74,56,83,65)(48,75,57,84,66)(49,76,58,85,67)(50,77,59,86,68)(51,78,60,87,69)(52,79,61,88,70)(53,80,62,89,71)(54,81,63,90,72), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,19,37,10,28)(2,20,38,11,29)(3,21,39,12,30)(4,22,40,13,31)(5,23,41,14,32)(6,24,42,15,33)(7,25,43,16,34)(8,26,44,17,35)(9,27,45,18,36)(46,73,55,82,64)(47,74,56,83,65)(48,75,57,84,66)(49,76,58,85,67)(50,77,59,86,68)(51,78,60,87,69)(52,79,61,88,70)(53,80,62,89,71)(54,81,63,90,72), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,19,37,10,28),(2,20,38,11,29),(3,21,39,12,30),(4,22,40,13,31),(5,23,41,14,32),(6,24,42,15,33),(7,25,43,16,34),(8,26,44,17,35),(9,27,45,18,36),(46,73,55,82,64),(47,74,56,83,65),(48,75,57,84,66),(49,76,58,85,67),(50,77,59,86,68),(51,78,60,87,69),(52,79,61,88,70),(53,80,62,89,71),(54,81,63,90,72)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(41,58),(42,59),(43,60),(44,61),(45,62)]])

180 conjugacy classes

class 1  2 3A3B5A5B5C5D5E···5N6A6B9A···9F10A10B10C10D15A···15H15I···15AB18A···18F30A···30H45A···45X45Y···45CF90A···90X
order123355555···5669···91010101015···1515···1518···1830···3045···4545···4590···90
size151111112···2551···155551···12···25···55···51···12···25···5

180 irreducible representations

dim111111111111222222
type+++
imageC1C2C3C5C6C9C10C15C18C30C45C90D5C3×D5C5×D5C9×D5D5×C15D5×C45
kernelD5×C45C5×C45D5×C15C9×D5C5×C15C5×D5C45C3×D5C52C15D5C5C45C15C9C5C3C1
# reps11242648682424248121648

Matrix representation of D5×C45 in GL3(𝔽181) generated by

3400
0290
0029
,
100
01350
05159
,
100
0158123
08423
G:=sub<GL(3,GF(181))| [34,0,0,0,29,0,0,0,29],[1,0,0,0,135,51,0,0,59],[1,0,0,0,158,84,0,123,23] >;

D5×C45 in GAP, Magma, Sage, TeX

D_5\times C_{45}
% in TeX

G:=Group("D5xC45");
// GroupNames label

G:=SmallGroup(450,14);
// by ID

G=gap.SmallGroup(450,14);
# by ID

G:=PCGroup([5,-2,-3,-5,-3,-5,156,9004]);
// Polycyclic

G:=Group<a,b,c|a^45=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C45 in TeX

׿
×
𝔽