extension | φ:Q→Aut N | d | ρ | Label | ID |
C58.1(C2×C4) = D29⋊C8 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 232 | 4 | C58.1(C2xC4) | 464,28 |
C58.2(C2×C4) = C116.C4 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 232 | 4 | C58.2(C2xC4) | 464,29 |
C58.3(C2×C4) = C4×C29⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 116 | 4 | C58.3(C2xC4) | 464,30 |
C58.4(C2×C4) = C116⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 116 | 4 | C58.4(C2xC4) | 464,31 |
C58.5(C2×C4) = C2×C29⋊C8 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 464 | | C58.5(C2xC4) | 464,32 |
C58.6(C2×C4) = C29⋊M4(2) | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 232 | 4- | C58.6(C2xC4) | 464,33 |
C58.7(C2×C4) = D29.D4 | φ: C2×C4/C2 → C4 ⊆ Aut C58 | 116 | 4+ | C58.7(C2xC4) | 464,34 |
C58.8(C2×C4) = C8×D29 | φ: C2×C4/C4 → C2 ⊆ Aut C58 | 232 | 2 | C58.8(C2xC4) | 464,4 |
C58.9(C2×C4) = C8⋊D29 | φ: C2×C4/C4 → C2 ⊆ Aut C58 | 232 | 2 | C58.9(C2xC4) | 464,5 |
C58.10(C2×C4) = C4×Dic29 | φ: C2×C4/C4 → C2 ⊆ Aut C58 | 464 | | C58.10(C2xC4) | 464,11 |
C58.11(C2×C4) = C58.D4 | φ: C2×C4/C4 → C2 ⊆ Aut C58 | 464 | | C58.11(C2xC4) | 464,12 |
C58.12(C2×C4) = D58⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C58 | 232 | | C58.12(C2xC4) | 464,14 |
C58.13(C2×C4) = C2×C29⋊2C8 | φ: C2×C4/C22 → C2 ⊆ Aut C58 | 464 | | C58.13(C2xC4) | 464,9 |
C58.14(C2×C4) = C4.Dic29 | φ: C2×C4/C22 → C2 ⊆ Aut C58 | 232 | 2 | C58.14(C2xC4) | 464,10 |
C58.15(C2×C4) = C4⋊Dic29 | φ: C2×C4/C22 → C2 ⊆ Aut C58 | 464 | | C58.15(C2xC4) | 464,13 |
C58.16(C2×C4) = C23.D29 | φ: C2×C4/C22 → C2 ⊆ Aut C58 | 232 | | C58.16(C2xC4) | 464,19 |
C58.17(C2×C4) = C22⋊C4×C29 | central extension (φ=1) | 232 | | C58.17(C2xC4) | 464,21 |
C58.18(C2×C4) = C4⋊C4×C29 | central extension (φ=1) | 464 | | C58.18(C2xC4) | 464,22 |
C58.19(C2×C4) = M4(2)×C29 | central extension (φ=1) | 232 | 2 | C58.19(C2xC4) | 464,24 |