Extensions 1→N→G→Q→1 with N=C58 and Q=C2×C4

Direct product G=N×Q with N=C58 and Q=C2×C4
dρLabelID
C22×C116464C2^2xC116464,45

Semidirect products G=N:Q with N=C58 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C58⋊(C2×C4) = C22×C29⋊C4φ: C2×C4/C2C4 ⊆ Aut C58116C58:(C2xC4)464,49
C582(C2×C4) = C2×C4×D29φ: C2×C4/C4C2 ⊆ Aut C58232C58:2(C2xC4)464,36
C583(C2×C4) = C22×Dic29φ: C2×C4/C22C2 ⊆ Aut C58464C58:3(C2xC4)464,43

Non-split extensions G=N.Q with N=C58 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C58.1(C2×C4) = D29⋊C8φ: C2×C4/C2C4 ⊆ Aut C582324C58.1(C2xC4)464,28
C58.2(C2×C4) = C116.C4φ: C2×C4/C2C4 ⊆ Aut C582324C58.2(C2xC4)464,29
C58.3(C2×C4) = C4×C29⋊C4φ: C2×C4/C2C4 ⊆ Aut C581164C58.3(C2xC4)464,30
C58.4(C2×C4) = C116⋊C4φ: C2×C4/C2C4 ⊆ Aut C581164C58.4(C2xC4)464,31
C58.5(C2×C4) = C2×C29⋊C8φ: C2×C4/C2C4 ⊆ Aut C58464C58.5(C2xC4)464,32
C58.6(C2×C4) = C29⋊M4(2)φ: C2×C4/C2C4 ⊆ Aut C582324-C58.6(C2xC4)464,33
C58.7(C2×C4) = D29.D4φ: C2×C4/C2C4 ⊆ Aut C581164+C58.7(C2xC4)464,34
C58.8(C2×C4) = C8×D29φ: C2×C4/C4C2 ⊆ Aut C582322C58.8(C2xC4)464,4
C58.9(C2×C4) = C8⋊D29φ: C2×C4/C4C2 ⊆ Aut C582322C58.9(C2xC4)464,5
C58.10(C2×C4) = C4×Dic29φ: C2×C4/C4C2 ⊆ Aut C58464C58.10(C2xC4)464,11
C58.11(C2×C4) = C58.D4φ: C2×C4/C4C2 ⊆ Aut C58464C58.11(C2xC4)464,12
C58.12(C2×C4) = D58⋊C4φ: C2×C4/C4C2 ⊆ Aut C58232C58.12(C2xC4)464,14
C58.13(C2×C4) = C2×C292C8φ: C2×C4/C22C2 ⊆ Aut C58464C58.13(C2xC4)464,9
C58.14(C2×C4) = C4.Dic29φ: C2×C4/C22C2 ⊆ Aut C582322C58.14(C2xC4)464,10
C58.15(C2×C4) = C4⋊Dic29φ: C2×C4/C22C2 ⊆ Aut C58464C58.15(C2xC4)464,13
C58.16(C2×C4) = C23.D29φ: C2×C4/C22C2 ⊆ Aut C58232C58.16(C2xC4)464,19
C58.17(C2×C4) = C22⋊C4×C29central extension (φ=1)232C58.17(C2xC4)464,21
C58.18(C2×C4) = C4⋊C4×C29central extension (φ=1)464C58.18(C2xC4)464,22
C58.19(C2×C4) = M4(2)×C29central extension (φ=1)2322C58.19(C2xC4)464,24

׿
×
𝔽