Copied to
clipboard

G = C116⋊C4order 464 = 24·29

1st semidirect product of C116 and C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C1161C4, D29.Q8, D29.1D4, Dic293C4, D58.5C22, C29⋊(C4⋊C4), C4⋊(C29⋊C4), C58.4(C2×C4), (C4×D29).4C2, (C2×C29⋊C4).C2, C2.5(C2×C29⋊C4), SmallGroup(464,31)

Series: Derived Chief Lower central Upper central

C1C58 — C116⋊C4
C1C29D29D58C2×C29⋊C4 — C116⋊C4
C29C58 — C116⋊C4
C1C2C4

Generators and relations for C116⋊C4
 G = < a,b | a116=b4=1, bab-1=a75 >

29C2
29C2
29C4
29C22
58C4
58C4
29C2×C4
29C2×C4
29C2×C4
2C29⋊C4
2C29⋊C4
29C4⋊C4

Smallest permutation representation of C116⋊C4
On 116 points
Generators in S116
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(2 100 58 76)(3 83 115 35)(4 66 56 110)(5 49 113 69)(6 32 54 28)(7 15 111 103)(8 114 52 62)(9 97 109 21)(10 80 50 96)(11 63 107 55)(12 46 48 14)(13 29 105 89)(16 94 44 82)(17 77 101 41)(18 60 42 116)(19 43 99 75)(20 26 40 34)(22 108 38 68)(23 91 95 27)(24 74 36 102)(25 57 93 61)(30 88)(31 71 87 47)(33 37 85 81)(39 51 79 67)(45 65 73 53)(64 90 112 86)(70 104 106 72)(78 84 98 92)

G:=sub<Sym(116)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (2,100,58,76)(3,83,115,35)(4,66,56,110)(5,49,113,69)(6,32,54,28)(7,15,111,103)(8,114,52,62)(9,97,109,21)(10,80,50,96)(11,63,107,55)(12,46,48,14)(13,29,105,89)(16,94,44,82)(17,77,101,41)(18,60,42,116)(19,43,99,75)(20,26,40,34)(22,108,38,68)(23,91,95,27)(24,74,36,102)(25,57,93,61)(30,88)(31,71,87,47)(33,37,85,81)(39,51,79,67)(45,65,73,53)(64,90,112,86)(70,104,106,72)(78,84,98,92)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (2,100,58,76)(3,83,115,35)(4,66,56,110)(5,49,113,69)(6,32,54,28)(7,15,111,103)(8,114,52,62)(9,97,109,21)(10,80,50,96)(11,63,107,55)(12,46,48,14)(13,29,105,89)(16,94,44,82)(17,77,101,41)(18,60,42,116)(19,43,99,75)(20,26,40,34)(22,108,38,68)(23,91,95,27)(24,74,36,102)(25,57,93,61)(30,88)(31,71,87,47)(33,37,85,81)(39,51,79,67)(45,65,73,53)(64,90,112,86)(70,104,106,72)(78,84,98,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(2,100,58,76),(3,83,115,35),(4,66,56,110),(5,49,113,69),(6,32,54,28),(7,15,111,103),(8,114,52,62),(9,97,109,21),(10,80,50,96),(11,63,107,55),(12,46,48,14),(13,29,105,89),(16,94,44,82),(17,77,101,41),(18,60,42,116),(19,43,99,75),(20,26,40,34),(22,108,38,68),(23,91,95,27),(24,74,36,102),(25,57,93,61),(30,88),(31,71,87,47),(33,37,85,81),(39,51,79,67),(45,65,73,53),(64,90,112,86),(70,104,106,72),(78,84,98,92)]])

38 conjugacy classes

class 1 2A2B2C4A4B···4F29A···29G58A···58G116A···116N
order122244···429···2958···58116···116
size112929258···584···44···44···4

38 irreducible representations

dim1111122444
type++++-++
imageC1C2C2C4C4D4Q8C29⋊C4C2×C29⋊C4C116⋊C4
kernelC116⋊C4C4×D29C2×C29⋊C4Dic29C116D29D29C4C2C1
# reps11222117714

Matrix representation of C116⋊C4 in GL4(𝔽233) generated by

8810022249
153225137207
1704218392
1888212726
,
1184226218
11620094104
1192670221
20221221078
G:=sub<GL(4,GF(233))| [88,153,170,188,100,225,42,82,222,137,183,127,49,207,92,26],[118,116,119,202,4,200,26,212,226,94,70,210,218,104,221,78] >;

C116⋊C4 in GAP, Magma, Sage, TeX

C_{116}\rtimes C_4
% in TeX

G:=Group("C116:C4");
// GroupNames label

G:=SmallGroup(464,31);
// by ID

G=gap.SmallGroup(464,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-29,20,101,46,4804,2814]);
// Polycyclic

G:=Group<a,b|a^116=b^4=1,b*a*b^-1=a^75>;
// generators/relations

Export

Subgroup lattice of C116⋊C4 in TeX

׿
×
𝔽