direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×C29⋊C4, C29⋊C42, C116⋊2C4, Dic29⋊2C4, D58.4C22, D29.(C2×C4), C58.3(C2×C4), (C4×D29).6C2, C2.2(C2×C29⋊C4), (C2×C29⋊C4).2C2, SmallGroup(464,30)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C29 — D29 — D58 — C2×C29⋊C4 — C4×C29⋊C4 |
C29 — C4×C29⋊C4 |
Generators and relations for C4×C29⋊C4
G = < a,b,c | a4=b29=c4=1, ab=ba, ac=ca, cbc-1=b17 >
(1 88 30 59)(2 89 31 60)(3 90 32 61)(4 91 33 62)(5 92 34 63)(6 93 35 64)(7 94 36 65)(8 95 37 66)(9 96 38 67)(10 97 39 68)(11 98 40 69)(12 99 41 70)(13 100 42 71)(14 101 43 72)(15 102 44 73)(16 103 45 74)(17 104 46 75)(18 105 47 76)(19 106 48 77)(20 107 49 78)(21 108 50 79)(22 109 51 80)(23 110 52 81)(24 111 53 82)(25 112 54 83)(26 113 55 84)(27 114 56 85)(28 115 57 86)(29 116 58 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 88 30 59)(2 100 58 76)(3 112 57 64)(4 95 56 81)(5 107 55 69)(6 90 54 86)(7 102 53 74)(8 114 52 62)(9 97 51 79)(10 109 50 67)(11 92 49 84)(12 104 48 72)(13 116 47 60)(14 99 46 77)(15 111 45 65)(16 94 44 82)(17 106 43 70)(18 89 42 87)(19 101 41 75)(20 113 40 63)(21 96 39 80)(22 108 38 68)(23 91 37 85)(24 103 36 73)(25 115 35 61)(26 98 34 78)(27 110 33 66)(28 93 32 83)(29 105 31 71)
G:=sub<Sym(116)| (1,88,30,59)(2,89,31,60)(3,90,32,61)(4,91,33,62)(5,92,34,63)(6,93,35,64)(7,94,36,65)(8,95,37,66)(9,96,38,67)(10,97,39,68)(11,98,40,69)(12,99,41,70)(13,100,42,71)(14,101,43,72)(15,102,44,73)(16,103,45,74)(17,104,46,75)(18,105,47,76)(19,106,48,77)(20,107,49,78)(21,108,50,79)(22,109,51,80)(23,110,52,81)(24,111,53,82)(25,112,54,83)(26,113,55,84)(27,114,56,85)(28,115,57,86)(29,116,58,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,88,30,59)(2,100,58,76)(3,112,57,64)(4,95,56,81)(5,107,55,69)(6,90,54,86)(7,102,53,74)(8,114,52,62)(9,97,51,79)(10,109,50,67)(11,92,49,84)(12,104,48,72)(13,116,47,60)(14,99,46,77)(15,111,45,65)(16,94,44,82)(17,106,43,70)(18,89,42,87)(19,101,41,75)(20,113,40,63)(21,96,39,80)(22,108,38,68)(23,91,37,85)(24,103,36,73)(25,115,35,61)(26,98,34,78)(27,110,33,66)(28,93,32,83)(29,105,31,71)>;
G:=Group( (1,88,30,59)(2,89,31,60)(3,90,32,61)(4,91,33,62)(5,92,34,63)(6,93,35,64)(7,94,36,65)(8,95,37,66)(9,96,38,67)(10,97,39,68)(11,98,40,69)(12,99,41,70)(13,100,42,71)(14,101,43,72)(15,102,44,73)(16,103,45,74)(17,104,46,75)(18,105,47,76)(19,106,48,77)(20,107,49,78)(21,108,50,79)(22,109,51,80)(23,110,52,81)(24,111,53,82)(25,112,54,83)(26,113,55,84)(27,114,56,85)(28,115,57,86)(29,116,58,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,88,30,59)(2,100,58,76)(3,112,57,64)(4,95,56,81)(5,107,55,69)(6,90,54,86)(7,102,53,74)(8,114,52,62)(9,97,51,79)(10,109,50,67)(11,92,49,84)(12,104,48,72)(13,116,47,60)(14,99,46,77)(15,111,45,65)(16,94,44,82)(17,106,43,70)(18,89,42,87)(19,101,41,75)(20,113,40,63)(21,96,39,80)(22,108,38,68)(23,91,37,85)(24,103,36,73)(25,115,35,61)(26,98,34,78)(27,110,33,66)(28,93,32,83)(29,105,31,71) );
G=PermutationGroup([[(1,88,30,59),(2,89,31,60),(3,90,32,61),(4,91,33,62),(5,92,34,63),(6,93,35,64),(7,94,36,65),(8,95,37,66),(9,96,38,67),(10,97,39,68),(11,98,40,69),(12,99,41,70),(13,100,42,71),(14,101,43,72),(15,102,44,73),(16,103,45,74),(17,104,46,75),(18,105,47,76),(19,106,48,77),(20,107,49,78),(21,108,50,79),(22,109,51,80),(23,110,52,81),(24,111,53,82),(25,112,54,83),(26,113,55,84),(27,114,56,85),(28,115,57,86),(29,116,58,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,88,30,59),(2,100,58,76),(3,112,57,64),(4,95,56,81),(5,107,55,69),(6,90,54,86),(7,102,53,74),(8,114,52,62),(9,97,51,79),(10,109,50,67),(11,92,49,84),(12,104,48,72),(13,116,47,60),(14,99,46,77),(15,111,45,65),(16,94,44,82),(17,106,43,70),(18,89,42,87),(19,101,41,75),(20,113,40,63),(21,96,39,80),(22,108,38,68),(23,91,37,85),(24,103,36,73),(25,115,35,61),(26,98,34,78),(27,110,33,66),(28,93,32,83),(29,105,31,71)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | ··· | 4L | 29A | ··· | 29G | 58A | ··· | 58G | 116A | ··· | 116N |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 29 | ··· | 29 | 58 | ··· | 58 | 116 | ··· | 116 |
size | 1 | 1 | 29 | 29 | 1 | 1 | 29 | ··· | 29 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C4 | C4 | C4 | C29⋊C4 | C2×C29⋊C4 | C4×C29⋊C4 |
kernel | C4×C29⋊C4 | C4×D29 | C2×C29⋊C4 | Dic29 | C116 | C29⋊C4 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 7 | 7 | 14 |
Matrix representation of C4×C29⋊C4 ►in GL5(𝔽233)
89 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 127 | 120 | 85 | 232 |
0 | 37 | 12 | 125 | 163 |
0 | 214 | 150 | 57 | 24 |
0 | 153 | 51 | 8 | 52 |
232 | 0 | 0 | 0 | 0 |
0 | 216 | 168 | 112 | 14 |
0 | 13 | 9 | 214 | 47 |
0 | 172 | 187 | 200 | 182 |
0 | 167 | 186 | 5 | 41 |
G:=sub<GL(5,GF(233))| [89,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,127,37,214,153,0,120,12,150,51,0,85,125,57,8,0,232,163,24,52],[232,0,0,0,0,0,216,13,172,167,0,168,9,187,186,0,112,214,200,5,0,14,47,182,41] >;
C4×C29⋊C4 in GAP, Magma, Sage, TeX
C_4\times C_{29}\rtimes C_4
% in TeX
G:=Group("C4xC29:C4");
// GroupNames label
G:=SmallGroup(464,30);
// by ID
G=gap.SmallGroup(464,30);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-29,20,46,4804,2814]);
// Polycyclic
G:=Group<a,b,c|a^4=b^29=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations
Export