Extensions 1→N→G→Q→1 with N=C3 and Q=Dic5.14D4

Direct product G=N×Q with N=C3 and Q=Dic5.14D4
dρLabelID
C3×Dic5.14D4240C3xDic5.14D4480,671

Semidirect products G=N:Q with N=C3 and Q=Dic5.14D4
extensionφ:Q→Aut NdρLabelID
C31(Dic5.14D4) = D62Dic10φ: Dic5.14D4/C10.D4C2 ⊆ Aut C3240C3:1(Dic5.14D4)480,493
C32(Dic5.14D4) = D63Dic10φ: Dic5.14D4/C10.D4C2 ⊆ Aut C3240C3:2(Dic5.14D4)480,508
C33(Dic5.14D4) = D64Dic10φ: Dic5.14D4/C4⋊Dic5C2 ⊆ Aut C3240C3:3(Dic5.14D4)480,512
C34(Dic5.14D4) = Dic15.48D4φ: Dic5.14D4/C23.D5C2 ⊆ Aut C3240C3:4(Dic5.14D4)480,652
C35(Dic5.14D4) = C222Dic30φ: Dic5.14D4/C5×C22⋊C4C2 ⊆ Aut C3240C3:5(Dic5.14D4)480,843
C36(Dic5.14D4) = D61Dic10φ: Dic5.14D4/C2×Dic10C2 ⊆ Aut C3240C3:6(Dic5.14D4)480,486
C37(Dic5.14D4) = (C2×C30)⋊Q8φ: Dic5.14D4/C22×Dic5C2 ⊆ Aut C3240C3:7(Dic5.14D4)480,650


׿
×
𝔽