metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic5.14D4, C22⋊1Dic10, C23.12D10, (C2×C10)⋊Q8, C2.6(D4×D5), C4⋊Dic5⋊2C2, (C2×C4).5D10, C5⋊1(C22⋊Q8), C10.4(C2×Q8), C10.16(C2×D4), C22⋊C4.1D5, (C2×Dic10)⋊2C2, C10.D4⋊4C2, (C2×C20).1C22, C2.6(C2×Dic10), C23.D5.2C2, C10.21(C4○D4), C2.6(D4⋊2D5), (C2×C10).19C23, (C22×C10).8C22, (C22×Dic5).3C2, (C2×Dic5).5C22, C22.39(C22×D5), (C5×C22⋊C4).1C2, SmallGroup(160,99)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic5.14D4
G = < a,b,c,d | a10=c4=d2=1, b2=a5, bab-1=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd=a5c-1 >
Subgroups: 208 in 74 conjugacy classes, 35 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C22⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C2×Dic10, C22×Dic5, Dic5.14D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, Dic10, C22×D5, C2×Dic10, D4×D5, D4⋊2D5, Dic5.14D4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 62 6 67)(2 61 7 66)(3 70 8 65)(4 69 9 64)(5 68 10 63)(11 31 16 36)(12 40 17 35)(13 39 18 34)(14 38 19 33)(15 37 20 32)(21 52 26 57)(22 51 27 56)(23 60 28 55)(24 59 29 54)(25 58 30 53)(41 79 46 74)(42 78 47 73)(43 77 48 72)(44 76 49 71)(45 75 50 80)
(1 31 23 45)(2 32 24 46)(3 33 25 47)(4 34 26 48)(5 35 27 49)(6 36 28 50)(7 37 29 41)(8 38 30 42)(9 39 21 43)(10 40 22 44)(11 60 80 62)(12 51 71 63)(13 52 72 64)(14 53 73 65)(15 54 74 66)(16 55 75 67)(17 56 76 68)(18 57 77 69)(19 58 78 70)(20 59 79 61)
(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 71)(18 72)(19 73)(20 74)(31 50)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 49)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,6,67)(2,61,7,66)(3,70,8,65)(4,69,9,64)(5,68,10,63)(11,31,16,36)(12,40,17,35)(13,39,18,34)(14,38,19,33)(15,37,20,32)(21,52,26,57)(22,51,27,56)(23,60,28,55)(24,59,29,54)(25,58,30,53)(41,79,46,74)(42,78,47,73)(43,77,48,72)(44,76,49,71)(45,75,50,80), (1,31,23,45)(2,32,24,46)(3,33,25,47)(4,34,26,48)(5,35,27,49)(6,36,28,50)(7,37,29,41)(8,38,30,42)(9,39,21,43)(10,40,22,44)(11,60,80,62)(12,51,71,63)(13,52,72,64)(14,53,73,65)(15,54,74,66)(16,55,75,67)(17,56,76,68)(18,57,77,69)(19,58,78,70)(20,59,79,61), (11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(31,50)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,6,67)(2,61,7,66)(3,70,8,65)(4,69,9,64)(5,68,10,63)(11,31,16,36)(12,40,17,35)(13,39,18,34)(14,38,19,33)(15,37,20,32)(21,52,26,57)(22,51,27,56)(23,60,28,55)(24,59,29,54)(25,58,30,53)(41,79,46,74)(42,78,47,73)(43,77,48,72)(44,76,49,71)(45,75,50,80), (1,31,23,45)(2,32,24,46)(3,33,25,47)(4,34,26,48)(5,35,27,49)(6,36,28,50)(7,37,29,41)(8,38,30,42)(9,39,21,43)(10,40,22,44)(11,60,80,62)(12,51,71,63)(13,52,72,64)(14,53,73,65)(15,54,74,66)(16,55,75,67)(17,56,76,68)(18,57,77,69)(19,58,78,70)(20,59,79,61), (11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(31,50)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,62,6,67),(2,61,7,66),(3,70,8,65),(4,69,9,64),(5,68,10,63),(11,31,16,36),(12,40,17,35),(13,39,18,34),(14,38,19,33),(15,37,20,32),(21,52,26,57),(22,51,27,56),(23,60,28,55),(24,59,29,54),(25,58,30,53),(41,79,46,74),(42,78,47,73),(43,77,48,72),(44,76,49,71),(45,75,50,80)], [(1,31,23,45),(2,32,24,46),(3,33,25,47),(4,34,26,48),(5,35,27,49),(6,36,28,50),(7,37,29,41),(8,38,30,42),(9,39,21,43),(10,40,22,44),(11,60,80,62),(12,51,71,63),(13,52,72,64),(14,53,73,65),(15,54,74,66),(16,55,75,67),(17,56,76,68),(18,57,77,69),(19,58,78,70),(20,59,79,61)], [(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,71),(18,72),(19,73),(20,74),(31,50),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,49)]])
Dic5.14D4 is a maximal subgroup of
C23⋊2Dic10 C24.27D10 C24.31D10 C42.88D10 C42.90D10 C42⋊10D10 C42.96D10 D4×Dic10 C42.102D10 D4⋊5Dic10 D4⋊6Dic10 C42⋊12D10 C42⋊17D10 C42.118D10 C24.56D10 C24.32D10 C24.33D10 C24.35D10 C10.682- 1+4 Dic10⋊19D4 C10.352+ 1+4 C10.362+ 1+4 C10.392+ 1+4 C10.732- 1+4 C10.742- 1+4 (Q8×Dic5)⋊C2 C10.502+ 1+4 D5×C22⋊Q8 Dic10⋊21D4 C10.512+ 1+4 C10.1182+ 1+4 C10.522+ 1+4 C10.792- 1+4 C4⋊C4.197D10 C10.802- 1+4 C10.812- 1+4 C10.822- 1+4 C10.1222+ 1+4 C10.632+ 1+4 C10.842- 1+4 C10.852- 1+4 C10.692+ 1+4 C42.137D10 C42.139D10 C42.140D10 C42.141D10 Dic10⋊10D4 C42.144D10 C42.145D10 C42.159D10 C42.160D10 C42.161D10 C42.162D10 C42.164D10 C42.165D10 D6⋊1Dic10 D6⋊2Dic10 D6⋊3Dic10 D6⋊4Dic10 (C2×C30)⋊Q8 Dic15.48D4 C22⋊2Dic30 A4⋊Dic10
Dic5.14D4 is a maximal quotient of
(C2×C20)⋊Q8 C10.49(C4×D4) C4⋊Dic5⋊15C4 C10.52(C4×D4) (C2×Dic5)⋊Q8 C2.(C20⋊Q8) (C2×C4).Dic10 C10.(C4⋊Q8) Dic5.14D8 D4⋊Dic10 D4.Dic10 D4.2Dic10 Q8⋊Dic10 Dic5.9Q16 Q8.Dic10 Q8.2Dic10 C24.44D10 C24.46D10 C23⋊Dic10 C24.6D10 C24.7D10 C24.47D10 D6⋊1Dic10 D6⋊2Dic10 D6⋊3Dic10 D6⋊4Dic10 (C2×C30)⋊Q8 Dic15.48D4 C22⋊2Dic30
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | D5 | C4○D4 | D10 | D10 | Dic10 | D4×D5 | D4⋊2D5 |
kernel | Dic5.14D4 | C10.D4 | C4⋊Dic5 | C23.D5 | C5×C22⋊C4 | C2×Dic10 | C22×Dic5 | Dic5 | C2×C10 | C22⋊C4 | C10 | C2×C4 | C23 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 8 | 2 | 2 |
Matrix representation of Dic5.14D4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,32],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;
Dic5.14D4 in GAP, Magma, Sage, TeX
{\rm Dic}_5._{14}D_4
% in TeX
G:=Group("Dic5.14D4");
// GroupNames label
G:=SmallGroup(160,99);
// by ID
G=gap.SmallGroup(160,99);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,218,188,50,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^4=d^2=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=a^5*c^-1>;
// generators/relations