Extensions 1→N→G→Q→1 with N=S3×Dic5 and Q=C4

Direct product G=N×Q with N=S3×Dic5 and Q=C4
dρLabelID
C4×S3×Dic5240C4xS3xDic5480,473

Semidirect products G=N:Q with N=S3×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Dic5)⋊1C4 = D6.(C4×D5)φ: C4/C2C2 ⊆ Out S3×Dic5240(S3xDic5):1C4480,474
(S3×Dic5)⋊2C4 = S3×C10.D4φ: C4/C2C2 ⊆ Out S3×Dic5240(S3xDic5):2C4480,475
(S3×Dic5)⋊3C4 = (S3×Dic5)⋊C4φ: C4/C2C2 ⊆ Out S3×Dic5240(S3xDic5):3C4480,476
(S3×Dic5)⋊4C4 = C4⋊F53S3φ: C4/C2C2 ⊆ Out S3×Dic51208(S3xDic5):4C4480,983
(S3×Dic5)⋊5C4 = (C4×S3)⋊F5φ: C4/C2C2 ⊆ Out S3×Dic51208(S3xDic5):5C4480,985
(S3×Dic5)⋊6C4 = C4×S3×F5φ: C4/C2C2 ⊆ Out S3×Dic5608(S3xDic5):6C4480,994
(S3×Dic5)⋊7C4 = S3×C4⋊F5φ: C4/C2C2 ⊆ Out S3×Dic5608(S3xDic5):7C4480,996

Non-split extensions G=N.Q with N=S3×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Dic5).1C4 = D5×C8⋊S3φ: C4/C2C2 ⊆ Out S3×Dic51204(S3xDic5).1C4480,320
(S3×Dic5).2C4 = S3×C8⋊D5φ: C4/C2C2 ⊆ Out S3×Dic51204(S3xDic5).2C4480,321
(S3×Dic5).3C4 = C40⋊D6φ: C4/C2C2 ⊆ Out S3×Dic51204(S3xDic5).3C4480,322
(S3×Dic5).4C4 = C2×S3×C5⋊C8φ: C4/C2C2 ⊆ Out S3×Dic5240(S3xDic5).4C4480,1002
(S3×Dic5).5C4 = S3×C22.F5φ: C4/C2C2 ⊆ Out S3×Dic51208-(S3xDic5).5C4480,1004
(S3×Dic5).6C4 = C2×D6.F5φ: C4/C2C2 ⊆ Out S3×Dic5240(S3xDic5).6C4480,1008
(S3×Dic5).7C4 = S3×C8×D5φ: trivial image1204(S3xDic5).7C4480,319

׿
×
𝔽