Copied to
clipboard

G = (C4×S3)⋊F5order 480 = 25·3·5

3rd semidirect product of C4×S3 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C4×S3)⋊3F5, (C4×F5)⋊4S3, (S3×C20)⋊3C4, (C4×D15)⋊3C4, C5⋊(C422S3), (C12×F5)⋊4C2, D6⋊F5.2C2, (C2×F5).7D6, D6.6(C2×F5), C4.30(S3×F5), C20.30(C4×S3), C60.30(C2×C4), Dic3⋊F55C2, D30.C25C4, (S3×Dic5)⋊5C4, D30.6(C2×C4), (C4×D5).72D6, C12.37(C2×F5), C6.4(C22×F5), C30.4(C22×C4), Dic3.7(C2×F5), (C6×F5).8C22, C152(C42⋊C2), D5.2(C4○D12), Dic5.26(C4×S3), Dic15.8(C2×C4), (C6×D5).24C23, D10.27(C22×S3), (D5×C12).64C22, (D5×Dic3).13C22, C31(D10.C23), (C4×C3⋊F5)⋊4C2, C2.9(C2×S3×F5), C10.4(S3×C2×C4), (C4×S3×D5).9C2, (S3×C10).6(C2×C4), (C2×C3⋊F5).8C22, (C2×S3×D5).15C22, (C3×D5).4(C4○D4), (C5×Dic3).8(C2×C4), (C3×Dic5).22(C2×C4), SmallGroup(480,985)

Series: Derived Chief Lower central Upper central

C1C30 — (C4×S3)⋊F5
C1C5C15C3×D5C6×D5C6×F5D6⋊F5 — (C4×S3)⋊F5
C15C30 — (C4×S3)⋊F5
C1C4

Generators and relations for (C4×S3)⋊F5
 G = < a,b,c,d,e | a4=b5=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b3, bd=db, be=eb, cd=dc, ece=a2c, ede=d-1 >

Subgroups: 820 in 152 conjugacy classes, 50 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C2×C4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, C22×C4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C42⋊C2, C4×D5, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C4×Dic3, Dic3⋊C4, D6⋊C4, C4×C12, S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, C3×F5, C3⋊F5, S3×D5, C6×D5, S3×C10, D30, C4×F5, C4×F5, C4⋊F5, C22⋊F5, C2×C4×D5, C422S3, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C6×F5, C2×C3⋊F5, C2×S3×D5, D10.C23, D6⋊F5, Dic3⋊F5, C12×F5, C4×C3⋊F5, C4×S3×D5, (C4×S3)⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, F5, C4×S3, C22×S3, C42⋊C2, C2×F5, S3×C2×C4, C4○D12, C22×F5, C422S3, S3×F5, D10.C23, C2×S3×F5, (C4×S3)⋊F5

Smallest permutation representation of (C4×S3)⋊F5
On 120 points
Generators in S120
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 106 76 91)(62 107 77 92)(63 108 78 93)(64 109 79 94)(65 110 80 95)(66 111 81 96)(67 112 82 97)(68 113 83 98)(69 114 84 99)(70 115 85 100)(71 116 86 101)(72 117 87 102)(73 118 88 103)(74 119 89 104)(75 120 90 105)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 19)(2 16 5 17)(3 18 4 20)(6 23 7 25)(8 22 10 21)(9 24)(11 28 12 30)(13 27 15 26)(14 29)(31 48 32 50)(33 47 35 46)(34 49)(36 53 37 55)(38 52 40 51)(39 54)(41 58 42 60)(43 57 45 56)(44 59)(61 63 62 65)(66 68 67 70)(71 73 72 75)(76 78 77 80)(81 83 82 85)(86 88 87 90)(91 93 92 95)(96 98 97 100)(101 103 102 105)(106 108 107 110)(111 113 112 115)(116 118 117 120)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)(91 101 96)(92 102 97)(93 103 98)(94 104 99)(95 105 100)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)
(1 64)(2 65)(3 61)(4 62)(5 63)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)

G:=sub<Sym(120)| (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,19)(2,16,5,17)(3,18,4,20)(6,23,7,25)(8,22,10,21)(9,24)(11,28,12,30)(13,27,15,26)(14,29)(31,48,32,50)(33,47,35,46)(34,49)(36,53,37,55)(38,52,40,51)(39,54)(41,58,42,60)(43,57,45,56)(44,59)(61,63,62,65)(66,68,67,70)(71,73,72,75)(76,78,77,80)(81,83,82,85)(86,88,87,90)(91,93,92,95)(96,98,97,100)(101,103,102,105)(106,108,107,110)(111,113,112,115)(116,118,117,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115), (1,64)(2,65)(3,61)(4,62)(5,63)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)>;

G:=Group( (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,19)(2,16,5,17)(3,18,4,20)(6,23,7,25)(8,22,10,21)(9,24)(11,28,12,30)(13,27,15,26)(14,29)(31,48,32,50)(33,47,35,46)(34,49)(36,53,37,55)(38,52,40,51)(39,54)(41,58,42,60)(43,57,45,56)(44,59)(61,63,62,65)(66,68,67,70)(71,73,72,75)(76,78,77,80)(81,83,82,85)(86,88,87,90)(91,93,92,95)(96,98,97,100)(101,103,102,105)(106,108,107,110)(111,113,112,115)(116,118,117,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115), (1,64)(2,65)(3,61)(4,62)(5,63)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120) );

G=PermutationGroup([[(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,106,76,91),(62,107,77,92),(63,108,78,93),(64,109,79,94),(65,110,80,95),(66,111,81,96),(67,112,82,97),(68,113,83,98),(69,114,84,99),(70,115,85,100),(71,116,86,101),(72,117,87,102),(73,118,88,103),(74,119,89,104),(75,120,90,105)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,19),(2,16,5,17),(3,18,4,20),(6,23,7,25),(8,22,10,21),(9,24),(11,28,12,30),(13,27,15,26),(14,29),(31,48,32,50),(33,47,35,46),(34,49),(36,53,37,55),(38,52,40,51),(39,54),(41,58,42,60),(43,57,45,56),(44,59),(61,63,62,65),(66,68,67,70),(71,73,72,75),(76,78,77,80),(81,83,82,85),(86,88,87,90),(91,93,92,95),(96,98,97,100),(101,103,102,105),(106,108,107,110),(111,113,112,115),(116,118,117,120)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85),(91,101,96),(92,102,97),(93,103,98),(94,104,99),(95,105,100),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115)], [(1,64),(2,65),(3,61),(4,62),(5,63),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J···4N 5 6A6B6C10A10B10C12A12B12C···12L 15 20A20B20C20D 30 60A60B
order12222234444444444···45666101010121212···121520202020306060
size11556302115561010101030···30421010412122210···108441212888

48 irreducible representations

dim1111111111222222244444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4S3D6D6C4○D4C4×S3C4×S3C4○D12F5C2×F5C2×F5C2×F5D10.C23S3×F5C2×S3×F5(C4×S3)⋊F5
kernel(C4×S3)⋊F5D6⋊F5Dic3⋊F5C12×F5C4×C3⋊F5C4×S3×D5S3×Dic5D30.C2S3×C20C4×D15C4×F5C4×D5C2×F5C3×D5Dic5C20D5C4×S3Dic3C12D6C3C4C2C1
# reps1221112222112422811114112

Matrix representation of (C4×S3)⋊F5 in GL6(𝔽61)

100000
010000
0050000
0005000
0000500
0000050
,
100000
010000
000100
000010
000001
0060606060
,
100000
010000
0000600
0060000
0000060
0006000
,
4700000
59130000
001000
000100
000010
000001
,
9310000
23520000
005404747
00147140
00014714
004747054

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,60,0,0,0,0,0,0,0,60,0],[47,59,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,23,0,0,0,0,31,52,0,0,0,0,0,0,54,14,0,47,0,0,0,7,14,47,0,0,47,14,7,0,0,0,47,0,14,54] >;

(C4×S3)⋊F5 in GAP, Magma, Sage, TeX

(C_4\times S_3)\rtimes F_5
% in TeX

G:=Group("(C4xS3):F5");
// GroupNames label

G:=SmallGroup(480,985);
// by ID

G=gap.SmallGroup(480,985);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,253,100,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^5=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^3,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽