# Extensions 1→N→G→Q→1 with N=C22 and Q=D5×Dic3

Direct product G=N×Q with N=C22 and Q=D5×Dic3
dρLabelID
C22×D5×Dic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C22 and Q=D5×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(D5×Dic3) = D5×A4⋊C4φ: D5×Dic3/D10S3 ⊆ Aut C22606C2^2:(D5xDic3)480,979
C222(D5×Dic3) = Dic3×C5⋊D4φ: D5×Dic3/C5×Dic3C2 ⊆ Aut C22240C2^2:2(D5xDic3)480,629
C223(D5×Dic3) = Dic1516D4φ: D5×Dic3/Dic15C2 ⊆ Aut C22240C2^2:3(D5xDic3)480,635
C224(D5×Dic3) = D5×C6.D4φ: D5×Dic3/C6×D5C2 ⊆ Aut C22120C2^2:4(D5xDic3)480,623

Non-split extensions G=N.Q with N=C22 and Q=D5×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(D5×Dic3) = D20.3Dic3φ: D5×Dic3/C5×Dic3C2 ⊆ Aut C222404C2^2.1(D5xDic3)480,359
C22.2(D5×Dic3) = D20.2Dic3φ: D5×Dic3/Dic15C2 ⊆ Aut C222404C2^2.2(D5xDic3)480,360
C22.3(D5×Dic3) = C60.28D4φ: D5×Dic3/C6×D5C2 ⊆ Aut C221204C2^2.3(D5xDic3)480,34
C22.4(D5×Dic3) = C12.6D20φ: D5×Dic3/C6×D5C2 ⊆ Aut C222404C2^2.4(D5xDic3)480,37
C22.5(D5×Dic3) = (C2×C6).D20φ: D5×Dic3/C6×D5C2 ⊆ Aut C221204C2^2.5(D5xDic3)480,71
C22.6(D5×Dic3) = D5×C4.Dic3φ: D5×Dic3/C6×D5C2 ⊆ Aut C221204C2^2.6(D5xDic3)480,358
C22.7(D5×Dic3) = (C6×Dic5)⋊7C4φ: D5×Dic3/C6×D5C2 ⊆ Aut C22240C2^2.7(D5xDic3)480,604
C22.8(D5×Dic3) = Dic5×C3⋊C8central extension (φ=1)480C2^2.8(D5xDic3)480,25
C22.9(D5×Dic3) = C30.21C42central extension (φ=1)480C2^2.9(D5xDic3)480,28
C22.10(D5×Dic3) = C60.93D4central extension (φ=1)240C2^2.10(D5xDic3)480,31
C22.11(D5×Dic3) = C60.13Q8central extension (φ=1)480C2^2.11(D5xDic3)480,58
C22.12(D5×Dic3) = C30.24C42central extension (φ=1)480C2^2.12(D5xDic3)480,70
C22.13(D5×Dic3) = C2×D5×C3⋊C8central extension (φ=1)240C2^2.13(D5xDic3)480,357
C22.14(D5×Dic3) = C2×C20.32D6central extension (φ=1)240C2^2.14(D5xDic3)480,369
C22.15(D5×Dic3) = C2×Dic3×Dic5central extension (φ=1)480C2^2.15(D5xDic3)480,603
C22.16(D5×Dic3) = C2×D10⋊Dic3central extension (φ=1)240C2^2.16(D5xDic3)480,611
C22.17(D5×Dic3) = C2×C30.Q8central extension (φ=1)480C2^2.17(D5xDic3)480,617

׿
×
𝔽