Copied to
clipboard

G = D5×C4.Dic3order 480 = 25·3·5

Direct product of D5 and C4.Dic3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C4.Dic3, C60.175C23, C3⋊C821D10, C35(D5×M4(2)), (D5×C12).1C4, (C2×C20).77D6, C12.71(C4×D5), C60.114(C2×C4), (C4×D5).101D6, (C3×D5)⋊3M4(2), C1515(C2×M4(2)), (C4×D5).1Dic3, C60.7C412C2, C4.14(D5×Dic3), C153C825C22, (C2×C12).315D10, (C2×C60).46C22, C30.97(C22×C4), (C6×Dic5).10C4, C20.31(C2×Dic3), C20.32D612C2, C22.6(D5×Dic3), C20.172(C22×S3), D10.19(C2×Dic3), (C2×Dic5).6Dic3, C12.172(C22×D5), (C22×D5).4Dic3, Dic5.11(C2×Dic3), (D5×C12).102C22, C10.15(C22×Dic3), (D5×C3⋊C8)⋊11C2, (C2×C4×D5).1S3, (D5×C2×C6).7C4, C6.78(C2×C4×D5), (D5×C2×C12).1C2, C4.145(C2×S3×D5), C55(C2×C4.Dic3), C2.4(C2×D5×Dic3), (C5×C3⋊C8)⋊21C22, (C2×C6).51(C4×D5), (C2×C30).94(C2×C4), (C6×D5).48(C2×C4), (C2×C4).142(S3×D5), (C5×C4.Dic3)⋊5C2, (C3×Dic5).56(C2×C4), (C2×C10).24(C2×Dic3), SmallGroup(480,358)

Series: Derived Chief Lower central Upper central

C1C30 — D5×C4.Dic3
C1C5C15C30C60D5×C12D5×C3⋊C8 — D5×C4.Dic3
C15C30 — D5×C4.Dic3
C1C4C2×C4

Generators and relations for D5×C4.Dic3
 G = < a,b,c,d,e | a5=b2=c4=1, d6=c2, e2=c2d3, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d5 >

Subgroups: 476 in 136 conjugacy classes, 64 normal (50 characteristic)
C1, C2, C2 [×4], C3, C4 [×2], C4 [×2], C22, C22 [×4], C5, C6, C6 [×4], C8 [×4], C2×C4, C2×C4 [×5], C23, D5 [×2], D5, C10, C10, C12 [×2], C12 [×2], C2×C6, C2×C6 [×4], C15, C2×C8 [×2], M4(2) [×4], C22×C4, Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C3⋊C8 [×2], C3⋊C8 [×2], C2×C12, C2×C12 [×5], C22×C6, C3×D5 [×2], C3×D5, C30, C30, C2×M4(2), C52C8 [×2], C40 [×2], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, C2×C3⋊C8 [×2], C4.Dic3, C4.Dic3 [×3], C22×C12, C3×Dic5 [×2], C60 [×2], C6×D5 [×2], C6×D5 [×2], C2×C30, C8×D5 [×2], C8⋊D5 [×2], C4.Dic5, C5×M4(2), C2×C4×D5, C2×C4.Dic3, C5×C3⋊C8 [×2], C153C8 [×2], D5×C12 [×4], C6×Dic5, C2×C60, D5×C2×C6, D5×M4(2), D5×C3⋊C8 [×2], C20.32D6 [×2], C5×C4.Dic3, C60.7C4, D5×C2×C12, D5×C4.Dic3
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], C23, D5, Dic3 [×4], D6 [×3], M4(2) [×2], C22×C4, D10 [×3], C2×Dic3 [×6], C22×S3, C2×M4(2), C4×D5 [×2], C22×D5, C4.Dic3 [×2], C22×Dic3, S3×D5, C2×C4×D5, C2×C4.Dic3, D5×Dic3 [×2], C2×S3×D5, D5×M4(2), C2×D5×Dic3, D5×C4.Dic3

Smallest permutation representation of D5×C4.Dic3
On 120 points
Generators in S120
(1 73 35 21 70)(2 74 36 22 71)(3 75 25 23 72)(4 76 26 24 61)(5 77 27 13 62)(6 78 28 14 63)(7 79 29 15 64)(8 80 30 16 65)(9 81 31 17 66)(10 82 32 18 67)(11 83 33 19 68)(12 84 34 20 69)(37 96 59 116 102)(38 85 60 117 103)(39 86 49 118 104)(40 87 50 119 105)(41 88 51 120 106)(42 89 52 109 107)(43 90 53 110 108)(44 91 54 111 97)(45 92 55 112 98)(46 93 56 113 99)(47 94 57 114 100)(48 95 58 115 101)
(1 70)(2 71)(3 72)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 77)(14 78)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 73)(22 74)(23 75)(24 76)(37 96)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 104)(50 105)(51 106)(52 107)(53 108)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 103)
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)(49 52 55 58)(50 53 56 59)(51 54 57 60)(61 70 67 64)(62 71 68 65)(63 72 69 66)(73 82 79 76)(74 83 80 77)(75 84 81 78)(85 88 91 94)(86 89 92 95)(87 90 93 96)(97 100 103 106)(98 101 104 107)(99 102 105 108)(109 112 115 118)(110 113 116 119)(111 114 117 120)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 91 10 88 7 85 4 94)(2 96 11 93 8 90 5 87)(3 89 12 86 9 95 6 92)(13 105 22 102 19 99 16 108)(14 98 23 107 20 104 17 101)(15 103 24 100 21 97 18 106)(25 109 34 118 31 115 28 112)(26 114 35 111 32 120 29 117)(27 119 36 116 33 113 30 110)(37 68 46 65 43 62 40 71)(38 61 47 70 44 67 41 64)(39 66 48 63 45 72 42 69)(49 81 58 78 55 75 52 84)(50 74 59 83 56 80 53 77)(51 79 60 76 57 73 54 82)

G:=sub<Sym(120)| (1,73,35,21,70)(2,74,36,22,71)(3,75,25,23,72)(4,76,26,24,61)(5,77,27,13,62)(6,78,28,14,63)(7,79,29,15,64)(8,80,30,16,65)(9,81,31,17,66)(10,82,32,18,67)(11,83,33,19,68)(12,84,34,20,69)(37,96,59,116,102)(38,85,60,117,103)(39,86,49,118,104)(40,87,50,119,105)(41,88,51,120,106)(42,89,52,109,107)(43,90,53,110,108)(44,91,54,111,97)(45,92,55,112,98)(46,93,56,113,99)(47,94,57,114,100)(48,95,58,115,101), (1,70)(2,71)(3,72)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,73)(22,74)(23,75)(24,76)(37,96)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,104)(50,105)(51,106)(52,107)(53,108)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,70,67,64)(62,71,68,65)(63,72,69,66)(73,82,79,76)(74,83,80,77)(75,84,81,78)(85,88,91,94)(86,89,92,95)(87,90,93,96)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,112,115,118)(110,113,116,119)(111,114,117,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,91,10,88,7,85,4,94)(2,96,11,93,8,90,5,87)(3,89,12,86,9,95,6,92)(13,105,22,102,19,99,16,108)(14,98,23,107,20,104,17,101)(15,103,24,100,21,97,18,106)(25,109,34,118,31,115,28,112)(26,114,35,111,32,120,29,117)(27,119,36,116,33,113,30,110)(37,68,46,65,43,62,40,71)(38,61,47,70,44,67,41,64)(39,66,48,63,45,72,42,69)(49,81,58,78,55,75,52,84)(50,74,59,83,56,80,53,77)(51,79,60,76,57,73,54,82)>;

G:=Group( (1,73,35,21,70)(2,74,36,22,71)(3,75,25,23,72)(4,76,26,24,61)(5,77,27,13,62)(6,78,28,14,63)(7,79,29,15,64)(8,80,30,16,65)(9,81,31,17,66)(10,82,32,18,67)(11,83,33,19,68)(12,84,34,20,69)(37,96,59,116,102)(38,85,60,117,103)(39,86,49,118,104)(40,87,50,119,105)(41,88,51,120,106)(42,89,52,109,107)(43,90,53,110,108)(44,91,54,111,97)(45,92,55,112,98)(46,93,56,113,99)(47,94,57,114,100)(48,95,58,115,101), (1,70)(2,71)(3,72)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,73)(22,74)(23,75)(24,76)(37,96)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,104)(50,105)(51,106)(52,107)(53,108)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,70,67,64)(62,71,68,65)(63,72,69,66)(73,82,79,76)(74,83,80,77)(75,84,81,78)(85,88,91,94)(86,89,92,95)(87,90,93,96)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,112,115,118)(110,113,116,119)(111,114,117,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,91,10,88,7,85,4,94)(2,96,11,93,8,90,5,87)(3,89,12,86,9,95,6,92)(13,105,22,102,19,99,16,108)(14,98,23,107,20,104,17,101)(15,103,24,100,21,97,18,106)(25,109,34,118,31,115,28,112)(26,114,35,111,32,120,29,117)(27,119,36,116,33,113,30,110)(37,68,46,65,43,62,40,71)(38,61,47,70,44,67,41,64)(39,66,48,63,45,72,42,69)(49,81,58,78,55,75,52,84)(50,74,59,83,56,80,53,77)(51,79,60,76,57,73,54,82) );

G=PermutationGroup([(1,73,35,21,70),(2,74,36,22,71),(3,75,25,23,72),(4,76,26,24,61),(5,77,27,13,62),(6,78,28,14,63),(7,79,29,15,64),(8,80,30,16,65),(9,81,31,17,66),(10,82,32,18,67),(11,83,33,19,68),(12,84,34,20,69),(37,96,59,116,102),(38,85,60,117,103),(39,86,49,118,104),(40,87,50,119,105),(41,88,51,120,106),(42,89,52,109,107),(43,90,53,110,108),(44,91,54,111,97),(45,92,55,112,98),(46,93,56,113,99),(47,94,57,114,100),(48,95,58,115,101)], [(1,70),(2,71),(3,72),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,77),(14,78),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,73),(22,74),(23,75),(24,76),(37,96),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,104),(50,105),(51,106),(52,107),(53,108),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,103)], [(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48),(49,52,55,58),(50,53,56,59),(51,54,57,60),(61,70,67,64),(62,71,68,65),(63,72,69,66),(73,82,79,76),(74,83,80,77),(75,84,81,78),(85,88,91,94),(86,89,92,95),(87,90,93,96),(97,100,103,106),(98,101,104,107),(99,102,105,108),(109,112,115,118),(110,113,116,119),(111,114,117,120)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,91,10,88,7,85,4,94),(2,96,11,93,8,90,5,87),(3,89,12,86,9,95,6,92),(13,105,22,102,19,99,16,108),(14,98,23,107,20,104,17,101),(15,103,24,100,21,97,18,106),(25,109,34,118,31,115,28,112),(26,114,35,111,32,120,29,117),(27,119,36,116,33,113,30,110),(37,68,46,65,43,62,40,71),(38,61,47,70,44,67,41,64),(39,66,48,63,45,72,42,69),(49,81,58,78,55,75,52,84),(50,74,59,83,56,80,53,77),(51,79,60,76,57,73,54,82)])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C12D12E12F12G12H15A15B20A20B20C20D20E20F30A···30F40A···40H60A···60H
order122222344444455666666688888888101010101212121212121212151520202020202030···3040···4060···60
size11255102112551022222101010106666303030302244222210101010442222444···412···124···4

72 irreducible representations

dim1111111112222222222222444444
type++++++++-+-+-+++-+-
imageC1C2C2C2C2C2C4C4C4S3D5Dic3D6Dic3D6Dic3M4(2)D10D10C4×D5C4×D5C4.Dic3S3×D5D5×Dic3C2×S3×D5D5×Dic3D5×M4(2)D5×C4.Dic3
kernelD5×C4.Dic3D5×C3⋊C8C20.32D6C5×C4.Dic3C60.7C4D5×C2×C12D5×C12C6×Dic5D5×C2×C6C2×C4×D5C4.Dic3C4×D5C4×D5C2×Dic5C2×C20C22×D5C3×D5C3⋊C8C2×C12C12C2×C6D5C2×C4C4C4C22C3C1
# reps1221114221222111442448222248

Matrix representation of D5×C4.Dic3 in GL4(𝔽241) generated by

0100
2405100
0010
0001
,
0100
1000
0010
0001
,
240000
024000
001770
0011864
,
240000
024000
00600
00994
,
177000
017700
00177192
0013964
G:=sub<GL(4,GF(241))| [0,240,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,177,118,0,0,0,64],[240,0,0,0,0,240,0,0,0,0,60,99,0,0,0,4],[177,0,0,0,0,177,0,0,0,0,177,139,0,0,192,64] >;

D5×C4.Dic3 in GAP, Magma, Sage, TeX

D_5\times C_4.{\rm Dic}_3
% in TeX

G:=Group("D5xC4.Dic3");
// GroupNames label

G:=SmallGroup(480,358);
// by ID

G=gap.SmallGroup(480,358);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,64,219,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=1,d^6=c^2,e^2=c^2*d^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^5>;
// generators/relations

׿
×
𝔽