Copied to
clipboard

G = (C2×C6).D20order 480 = 25·3·5

2nd non-split extension by C2×C6 of D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C6).2D20, C157(C23⋊C4), (C6×Dic5)⋊1C4, (C2×C30).36D4, C23.8(S3×D5), C6.D41D5, (C2×Dic5)⋊1Dic3, (C22×D5)⋊3Dic3, (C22×C10).27D6, (C22×C6).12D10, C53(C23.7D6), C30.38D414C2, C22.5(D5×Dic3), C30.66(C22⋊C4), C22.8(C15⋊D4), C22.8(C3⋊D20), C33(C23.1D10), C6.32(D10⋊C4), (C22×C30).26C22, C10.22(C6.D4), C2.11(D10⋊Dic3), (D5×C2×C6)⋊1C4, (C2×C6).49(C4×D5), (C6×C5⋊D4).1C2, (C2×C5⋊D4).1S3, (C2×C30).90(C2×C4), (C2×C6).4(C5⋊D4), (C5×C6.D4)⋊1C2, (C2×C10).50(C3⋊D4), (C2×C10).23(C2×Dic3), SmallGroup(480,71)

Series: Derived Chief Lower central Upper central

C1C2×C30 — (C2×C6).D20
C1C5C15C30C2×C30C22×C30C6×C5⋊D4 — (C2×C6).D20
C15C30C2×C30 — (C2×C6).D20
C1C2C23

Generators and relations for (C2×C6).D20
 G = < a,b,c,d | a2=b6=c20=1, d2=a, ab=ba, cac-1=ab3, ad=da, cbc-1=dbd-1=b-1, dcd-1=ac-1 >

Subgroups: 540 in 104 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, Dic3, C12, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, C2×Dic3, C2×C12, C3×D4, C22×C6, C22×C6, C3×D5, C30, C30, C23⋊C4, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C6.D4, C6.D4, C6×D4, C5×Dic3, C3×Dic5, Dic15, C6×D5, C2×C30, C2×C30, C23.D5, C5×C22⋊C4, C2×C5⋊D4, C23.7D6, C6×Dic5, C3×C5⋊D4, C10×Dic3, C2×Dic15, D5×C2×C6, C22×C30, C23.1D10, C5×C6.D4, C30.38D4, C6×C5⋊D4, (C2×C6).D20
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, Dic3, D6, C22⋊C4, D10, C2×Dic3, C3⋊D4, C23⋊C4, C4×D5, D20, C5⋊D4, C6.D4, S3×D5, D10⋊C4, C23.7D6, D5×Dic3, C15⋊D4, C3⋊D20, C23.1D10, D10⋊Dic3, (C2×C6).D20

Smallest permutation representation of (C2×C6).D20
On 120 points
Generators in S120
(1 117)(3 119)(5 101)(7 103)(9 105)(11 107)(13 109)(15 111)(17 113)(19 115)(22 68)(24 70)(26 72)(28 74)(30 76)(32 78)(34 80)(36 62)(38 64)(40 66)(42 90)(44 92)(46 94)(48 96)(50 98)(52 100)(54 82)(56 84)(58 86)(60 88)
(1 54 40 117 82 66)(2 67 83 118 21 55)(3 56 22 119 84 68)(4 69 85 120 23 57)(5 58 24 101 86 70)(6 71 87 102 25 59)(7 60 26 103 88 72)(8 73 89 104 27 41)(9 42 28 105 90 74)(10 75 91 106 29 43)(11 44 30 107 92 76)(12 77 93 108 31 45)(13 46 32 109 94 78)(14 79 95 110 33 47)(15 48 34 111 96 80)(16 61 97 112 35 49)(17 50 36 113 98 62)(18 63 99 114 37 51)(19 52 38 115 100 64)(20 65 81 116 39 53)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 111 117 15)(2 110)(3 13 119 109)(4 12)(5 107 101 11)(6 106)(7 9 103 105)(10 102)(14 118)(16 20)(17 115 113 19)(18 114)(21 47)(22 94 68 46)(23 93)(24 44 70 92)(25 43)(26 90 72 42)(27 89)(28 60 74 88)(29 59)(30 86 76 58)(31 85)(32 56 78 84)(33 55)(34 82 80 54)(35 81)(36 52 62 100)(37 51)(38 98 64 50)(39 97)(40 48 66 96)(41 73)(45 69)(49 65)(53 61)(57 77)(63 99)(67 95)(71 91)(75 87)(79 83)(108 120)(112 116)

G:=sub<Sym(120)| (1,117)(3,119)(5,101)(7,103)(9,105)(11,107)(13,109)(15,111)(17,113)(19,115)(22,68)(24,70)(26,72)(28,74)(30,76)(32,78)(34,80)(36,62)(38,64)(40,66)(42,90)(44,92)(46,94)(48,96)(50,98)(52,100)(54,82)(56,84)(58,86)(60,88), (1,54,40,117,82,66)(2,67,83,118,21,55)(3,56,22,119,84,68)(4,69,85,120,23,57)(5,58,24,101,86,70)(6,71,87,102,25,59)(7,60,26,103,88,72)(8,73,89,104,27,41)(9,42,28,105,90,74)(10,75,91,106,29,43)(11,44,30,107,92,76)(12,77,93,108,31,45)(13,46,32,109,94,78)(14,79,95,110,33,47)(15,48,34,111,96,80)(16,61,97,112,35,49)(17,50,36,113,98,62)(18,63,99,114,37,51)(19,52,38,115,100,64)(20,65,81,116,39,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,111,117,15)(2,110)(3,13,119,109)(4,12)(5,107,101,11)(6,106)(7,9,103,105)(10,102)(14,118)(16,20)(17,115,113,19)(18,114)(21,47)(22,94,68,46)(23,93)(24,44,70,92)(25,43)(26,90,72,42)(27,89)(28,60,74,88)(29,59)(30,86,76,58)(31,85)(32,56,78,84)(33,55)(34,82,80,54)(35,81)(36,52,62,100)(37,51)(38,98,64,50)(39,97)(40,48,66,96)(41,73)(45,69)(49,65)(53,61)(57,77)(63,99)(67,95)(71,91)(75,87)(79,83)(108,120)(112,116)>;

G:=Group( (1,117)(3,119)(5,101)(7,103)(9,105)(11,107)(13,109)(15,111)(17,113)(19,115)(22,68)(24,70)(26,72)(28,74)(30,76)(32,78)(34,80)(36,62)(38,64)(40,66)(42,90)(44,92)(46,94)(48,96)(50,98)(52,100)(54,82)(56,84)(58,86)(60,88), (1,54,40,117,82,66)(2,67,83,118,21,55)(3,56,22,119,84,68)(4,69,85,120,23,57)(5,58,24,101,86,70)(6,71,87,102,25,59)(7,60,26,103,88,72)(8,73,89,104,27,41)(9,42,28,105,90,74)(10,75,91,106,29,43)(11,44,30,107,92,76)(12,77,93,108,31,45)(13,46,32,109,94,78)(14,79,95,110,33,47)(15,48,34,111,96,80)(16,61,97,112,35,49)(17,50,36,113,98,62)(18,63,99,114,37,51)(19,52,38,115,100,64)(20,65,81,116,39,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,111,117,15)(2,110)(3,13,119,109)(4,12)(5,107,101,11)(6,106)(7,9,103,105)(10,102)(14,118)(16,20)(17,115,113,19)(18,114)(21,47)(22,94,68,46)(23,93)(24,44,70,92)(25,43)(26,90,72,42)(27,89)(28,60,74,88)(29,59)(30,86,76,58)(31,85)(32,56,78,84)(33,55)(34,82,80,54)(35,81)(36,52,62,100)(37,51)(38,98,64,50)(39,97)(40,48,66,96)(41,73)(45,69)(49,65)(53,61)(57,77)(63,99)(67,95)(71,91)(75,87)(79,83)(108,120)(112,116) );

G=PermutationGroup([[(1,117),(3,119),(5,101),(7,103),(9,105),(11,107),(13,109),(15,111),(17,113),(19,115),(22,68),(24,70),(26,72),(28,74),(30,76),(32,78),(34,80),(36,62),(38,64),(40,66),(42,90),(44,92),(46,94),(48,96),(50,98),(52,100),(54,82),(56,84),(58,86),(60,88)], [(1,54,40,117,82,66),(2,67,83,118,21,55),(3,56,22,119,84,68),(4,69,85,120,23,57),(5,58,24,101,86,70),(6,71,87,102,25,59),(7,60,26,103,88,72),(8,73,89,104,27,41),(9,42,28,105,90,74),(10,75,91,106,29,43),(11,44,30,107,92,76),(12,77,93,108,31,45),(13,46,32,109,94,78),(14,79,95,110,33,47),(15,48,34,111,96,80),(16,61,97,112,35,49),(17,50,36,113,98,62),(18,63,99,114,37,51),(19,52,38,115,100,64),(20,65,81,116,39,53)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,111,117,15),(2,110),(3,13,119,109),(4,12),(5,107,101,11),(6,106),(7,9,103,105),(10,102),(14,118),(16,20),(17,115,113,19),(18,114),(21,47),(22,94,68,46),(23,93),(24,44,70,92),(25,43),(26,90,72,42),(27,89),(28,60,74,88),(29,59),(30,86,76,58),(31,85),(32,56,78,84),(33,55),(34,82,80,54),(35,81),(36,52,62,100),(37,51),(38,98,64,50),(39,97),(40,48,66,96),(41,73),(45,69),(49,65),(53,61),(57,77),(63,99),(67,95),(71,91),(75,87),(79,83),(108,120),(112,116)]])

57 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E5A5B6A6B6C6D6E6F6G10A···10F10G10H10I10J12A12B15A15B20A···20H30A···30N
order12222234444455666666610···10101010101212151520···2030···30
size112222021212206060222224420202···2444420204412···124···4

57 irreducible representations

dim1111112222222222244444444
type+++++++--+++++--+
imageC1C2C2C2C4C4S3D4D5Dic3Dic3D6D10C3⋊D4C4×D5D20C5⋊D4C23⋊C4S3×D5C23.7D6D5×Dic3C15⋊D4C3⋊D20C23.1D10(C2×C6).D20
kernel(C2×C6).D20C5×C6.D4C30.38D4C6×C5⋊D4C6×Dic5D5×C2×C6C2×C5⋊D4C2×C30C6.D4C2×Dic5C22×D5C22×C10C22×C6C2×C10C2×C6C2×C6C2×C6C15C23C5C22C22C22C3C1
# reps1111221221112444412222248

Matrix representation of (C2×C6).D20 in GL4(𝔽61) generated by

60000
06000
334410
334401
,
254500
493700
14535316
4128459
,
36486042
59381817
60581731
13271731
,
474400
81400
412501
412510
G:=sub<GL(4,GF(61))| [60,0,33,33,0,60,44,44,0,0,1,0,0,0,0,1],[25,49,14,41,45,37,53,28,0,0,53,45,0,0,16,9],[36,59,60,13,48,38,58,27,60,18,17,17,42,17,31,31],[47,8,41,41,44,14,25,25,0,0,0,1,0,0,1,0] >;

(C2×C6).D20 in GAP, Magma, Sage, TeX

(C_2\times C_6).D_{20}
% in TeX

G:=Group("(C2xC6).D20");
// GroupNames label

G:=SmallGroup(480,71);
// by ID

G=gap.SmallGroup(480,71);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,36,422,346,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^20=1,d^2=a,a*b=b*a,c*a*c^-1=a*b^3,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽