# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C5×S3

Direct product G=N×Q with N=C2×D4 and Q=C5×S3
dρLabelID
S3×D4×C10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=C2×D4 and Q=C5×S3
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1(C5×S3) = C10×D4⋊S3φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4):1(C5xS3)480,810
(C2×D4)⋊2(C5×S3) = C5×D126C22φ: C5×S3/C15C2 ⊆ Out C2×D41204(C2xD4):2(C5xS3)480,811
(C2×D4)⋊3(C5×S3) = C5×C232D6φ: C5×S3/C15C2 ⊆ Out C2×D4120(C2xD4):3(C5xS3)480,816
(C2×D4)⋊4(C5×S3) = C5×D63D4φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4):4(C5xS3)480,817
(C2×D4)⋊5(C5×S3) = C5×C23.14D6φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4):5(C5xS3)480,818
(C2×D4)⋊6(C5×S3) = C5×C123D4φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4):6(C5xS3)480,819
(C2×D4)⋊7(C5×S3) = C5×D46D6φ: C5×S3/C15C2 ⊆ Out C2×D41204(C2xD4):7(C5xS3)480,1156
(C2×D4)⋊8(C5×S3) = C10×D42S3φ: trivial image240(C2xD4):8(C5xS3)480,1155

Non-split extensions G=N.Q with N=C2×D4 and Q=C5×S3
extensionφ:Q→Out NdρLabelID
(C2×D4).1(C5×S3) = C5×D4⋊Dic3φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4).1(C5xS3)480,151
(C2×D4).2(C5×S3) = C5×C12.D4φ: C5×S3/C15C2 ⊆ Out C2×D41204(C2xD4).2(C5xS3)480,152
(C2×D4).3(C5×S3) = C5×C23.7D6φ: C5×S3/C15C2 ⊆ Out C2×D41204(C2xD4).3(C5xS3)480,153
(C2×D4).4(C5×S3) = C10×D4.S3φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4).4(C5xS3)480,812
(C2×D4).5(C5×S3) = C5×C23.23D6φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4).5(C5xS3)480,814
(C2×D4).6(C5×S3) = C5×C23.12D6φ: C5×S3/C15C2 ⊆ Out C2×D4240(C2xD4).6(C5xS3)480,815
(C2×D4).7(C5×S3) = C5×D4×Dic3φ: trivial image240(C2xD4).7(C5xS3)480,813

׿
×
𝔽