Copied to
clipboard

G = C5×C12.D4order 480 = 25·3·5

Direct product of C5 and C12.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C12.D4, C60.141D4, C12.8(C5×D4), (C6×D4).2C10, (D4×C10).7S3, (D4×C30).12C2, (C2×C20).215D6, C4.Dic33C10, (C22×C6).2C20, C20.92(C3⋊D4), C1512(C4.D4), (C22×C30).12C4, C23.2(C5×Dic3), (C2×C60).346C22, C22.2(C10×Dic3), (C22×C10).4Dic3, C30.118(C22⋊C4), C10.34(C6.D4), C32(C5×C4.D4), (C2×C4).3(S3×C10), (C2×D4).2(C5×S3), C4.13(C5×C3⋊D4), (C2×C6).28(C2×C20), C6.14(C5×C22⋊C4), (C2×C30).196(C2×C4), (C2×C12).16(C2×C10), (C5×C4.Dic3)⋊15C2, C2.4(C5×C6.D4), (C2×C10).40(C2×Dic3), SmallGroup(480,152)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C5×C12.D4
C1C3C6C2×C6C2×C12C2×C60C5×C4.Dic3 — C5×C12.D4
C3C6C2×C6 — C5×C12.D4
C1C10C2×C20D4×C10

Generators and relations for C5×C12.D4
 G = < a,b,c,d | a5=b12=1, c4=b6, d2=b9, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b5, dcd-1=b3c3 >

Subgroups: 196 in 92 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, C20, C2×C10, C2×C10, C3⋊C8, C2×C12, C3×D4, C22×C6, C30, C30, C4.D4, C40, C2×C20, C5×D4, C22×C10, C4.Dic3, C6×D4, C60, C2×C30, C2×C30, C5×M4(2), D4×C10, C12.D4, C5×C3⋊C8, C2×C60, D4×C15, C22×C30, C5×C4.D4, C5×C4.Dic3, D4×C30, C5×C12.D4
Quotients: C1, C2, C4, C22, C5, S3, C2×C4, D4, C10, Dic3, D6, C22⋊C4, C20, C2×C10, C2×Dic3, C3⋊D4, C5×S3, C4.D4, C2×C20, C5×D4, C6.D4, C5×Dic3, S3×C10, C5×C22⋊C4, C12.D4, C10×Dic3, C5×C3⋊D4, C5×C4.D4, C5×C6.D4, C5×C12.D4

Smallest permutation representation of C5×C12.D4
On 120 points
Generators in S120
(1 55 37 31 13)(2 56 38 32 14)(3 57 39 33 15)(4 58 40 34 16)(5 59 41 35 17)(6 60 42 36 18)(7 49 43 25 19)(8 50 44 26 20)(9 51 45 27 21)(10 52 46 28 22)(11 53 47 29 23)(12 54 48 30 24)(61 112 104 90 77)(62 113 105 91 78)(63 114 106 92 79)(64 115 107 93 80)(65 116 108 94 81)(66 117 97 95 82)(67 118 98 96 83)(68 119 99 85 84)(69 120 100 86 73)(70 109 101 87 74)(71 110 102 88 75)(72 111 103 89 76)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 69 10 72 7 63 4 66)(2 68 11 71 8 62 5 65)(3 67 12 70 9 61 6 64)(13 73 22 76 19 79 16 82)(14 84 23 75 20 78 17 81)(15 83 24 74 21 77 18 80)(25 92 34 95 31 86 28 89)(26 91 35 94 32 85 29 88)(27 90 36 93 33 96 30 87)(37 100 46 103 43 106 40 97)(38 99 47 102 44 105 41 108)(39 98 48 101 45 104 42 107)(49 114 58 117 55 120 52 111)(50 113 59 116 56 119 53 110)(51 112 60 115 57 118 54 109)
(1 63 10 72 7 69 4 66)(2 68 11 65 8 62 5 71)(3 61 12 70 9 67 6 64)(13 79 22 76 19 73 16 82)(14 84 23 81 20 78 17 75)(15 77 24 74 21 83 18 80)(25 86 34 95 31 92 28 89)(26 91 35 88 32 85 29 94)(27 96 36 93 33 90 30 87)(37 106 46 103 43 100 40 97)(38 99 47 108 44 105 41 102)(39 104 48 101 45 98 42 107)(49 120 58 117 55 114 52 111)(50 113 59 110 56 119 53 116)(51 118 60 115 57 112 54 109)

G:=sub<Sym(120)| (1,55,37,31,13)(2,56,38,32,14)(3,57,39,33,15)(4,58,40,34,16)(5,59,41,35,17)(6,60,42,36,18)(7,49,43,25,19)(8,50,44,26,20)(9,51,45,27,21)(10,52,46,28,22)(11,53,47,29,23)(12,54,48,30,24)(61,112,104,90,77)(62,113,105,91,78)(63,114,106,92,79)(64,115,107,93,80)(65,116,108,94,81)(66,117,97,95,82)(67,118,98,96,83)(68,119,99,85,84)(69,120,100,86,73)(70,109,101,87,74)(71,110,102,88,75)(72,111,103,89,76), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,69,10,72,7,63,4,66)(2,68,11,71,8,62,5,65)(3,67,12,70,9,61,6,64)(13,73,22,76,19,79,16,82)(14,84,23,75,20,78,17,81)(15,83,24,74,21,77,18,80)(25,92,34,95,31,86,28,89)(26,91,35,94,32,85,29,88)(27,90,36,93,33,96,30,87)(37,100,46,103,43,106,40,97)(38,99,47,102,44,105,41,108)(39,98,48,101,45,104,42,107)(49,114,58,117,55,120,52,111)(50,113,59,116,56,119,53,110)(51,112,60,115,57,118,54,109), (1,63,10,72,7,69,4,66)(2,68,11,65,8,62,5,71)(3,61,12,70,9,67,6,64)(13,79,22,76,19,73,16,82)(14,84,23,81,20,78,17,75)(15,77,24,74,21,83,18,80)(25,86,34,95,31,92,28,89)(26,91,35,88,32,85,29,94)(27,96,36,93,33,90,30,87)(37,106,46,103,43,100,40,97)(38,99,47,108,44,105,41,102)(39,104,48,101,45,98,42,107)(49,120,58,117,55,114,52,111)(50,113,59,110,56,119,53,116)(51,118,60,115,57,112,54,109)>;

G:=Group( (1,55,37,31,13)(2,56,38,32,14)(3,57,39,33,15)(4,58,40,34,16)(5,59,41,35,17)(6,60,42,36,18)(7,49,43,25,19)(8,50,44,26,20)(9,51,45,27,21)(10,52,46,28,22)(11,53,47,29,23)(12,54,48,30,24)(61,112,104,90,77)(62,113,105,91,78)(63,114,106,92,79)(64,115,107,93,80)(65,116,108,94,81)(66,117,97,95,82)(67,118,98,96,83)(68,119,99,85,84)(69,120,100,86,73)(70,109,101,87,74)(71,110,102,88,75)(72,111,103,89,76), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,69,10,72,7,63,4,66)(2,68,11,71,8,62,5,65)(3,67,12,70,9,61,6,64)(13,73,22,76,19,79,16,82)(14,84,23,75,20,78,17,81)(15,83,24,74,21,77,18,80)(25,92,34,95,31,86,28,89)(26,91,35,94,32,85,29,88)(27,90,36,93,33,96,30,87)(37,100,46,103,43,106,40,97)(38,99,47,102,44,105,41,108)(39,98,48,101,45,104,42,107)(49,114,58,117,55,120,52,111)(50,113,59,116,56,119,53,110)(51,112,60,115,57,118,54,109), (1,63,10,72,7,69,4,66)(2,68,11,65,8,62,5,71)(3,61,12,70,9,67,6,64)(13,79,22,76,19,73,16,82)(14,84,23,81,20,78,17,75)(15,77,24,74,21,83,18,80)(25,86,34,95,31,92,28,89)(26,91,35,88,32,85,29,94)(27,96,36,93,33,90,30,87)(37,106,46,103,43,100,40,97)(38,99,47,108,44,105,41,102)(39,104,48,101,45,98,42,107)(49,120,58,117,55,114,52,111)(50,113,59,110,56,119,53,116)(51,118,60,115,57,112,54,109) );

G=PermutationGroup([[(1,55,37,31,13),(2,56,38,32,14),(3,57,39,33,15),(4,58,40,34,16),(5,59,41,35,17),(6,60,42,36,18),(7,49,43,25,19),(8,50,44,26,20),(9,51,45,27,21),(10,52,46,28,22),(11,53,47,29,23),(12,54,48,30,24),(61,112,104,90,77),(62,113,105,91,78),(63,114,106,92,79),(64,115,107,93,80),(65,116,108,94,81),(66,117,97,95,82),(67,118,98,96,83),(68,119,99,85,84),(69,120,100,86,73),(70,109,101,87,74),(71,110,102,88,75),(72,111,103,89,76)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,69,10,72,7,63,4,66),(2,68,11,71,8,62,5,65),(3,67,12,70,9,61,6,64),(13,73,22,76,19,79,16,82),(14,84,23,75,20,78,17,81),(15,83,24,74,21,77,18,80),(25,92,34,95,31,86,28,89),(26,91,35,94,32,85,29,88),(27,90,36,93,33,96,30,87),(37,100,46,103,43,106,40,97),(38,99,47,102,44,105,41,108),(39,98,48,101,45,104,42,107),(49,114,58,117,55,120,52,111),(50,113,59,116,56,119,53,110),(51,112,60,115,57,118,54,109)], [(1,63,10,72,7,69,4,66),(2,68,11,65,8,62,5,71),(3,61,12,70,9,67,6,64),(13,79,22,76,19,73,16,82),(14,84,23,81,20,78,17,75),(15,77,24,74,21,83,18,80),(25,86,34,95,31,92,28,89),(26,91,35,88,32,85,29,94),(27,96,36,93,33,90,30,87),(37,106,46,103,43,100,40,97),(38,99,47,108,44,105,41,102),(39,104,48,101,45,98,42,107),(49,120,58,117,55,114,52,111),(50,113,59,110,56,119,53,116),(51,118,60,115,57,112,54,109)]])

105 conjugacy classes

class 1 2A2B2C2D 3 4A4B5A5B5C5D6A6B6C6D6E6F6G8A8B8C8D10A10B10C10D10E10F10G10H10I···10P12A12B15A15B15C15D20A···20H30A···30L30M···30AB40A···40P60A···60H
order12222344555566666668888101010101010101010···1012121515151520···2030···3030···3040···4060···60
size112442221111222444412121212111122224···44422222···22···24···412···124···4

105 irreducible representations

dim1111111122222222224444
type++++++-+
imageC1C2C2C4C5C10C10C20S3D4D6Dic3C3⋊D4C5×S3C5×D4S3×C10C5×Dic3C5×C3⋊D4C4.D4C12.D4C5×C4.D4C5×C12.D4
kernelC5×C12.D4C5×C4.Dic3D4×C30C22×C30C12.D4C4.Dic3C6×D4C22×C6D4×C10C60C2×C20C22×C10C20C2×D4C12C2×C4C23C4C15C5C3C1
# reps121448416121244848161248

Matrix representation of C5×C12.D4 in GL4(𝔽241) generated by

91000
09100
00910
00091
,
1522700
10122600
225150225
15615160
,
24002240
1700240240
0110
0010
,
24002240
002401
0110
71010
G:=sub<GL(4,GF(241))| [91,0,0,0,0,91,0,0,0,0,91,0,0,0,0,91],[15,101,225,156,227,226,15,15,0,0,0,16,0,0,225,0],[240,170,0,0,0,0,1,0,224,240,1,1,0,240,0,0],[240,0,0,71,0,0,1,0,224,240,1,1,0,1,0,0] >;

C5×C12.D4 in GAP, Magma, Sage, TeX

C_5\times C_{12}.D_4
% in TeX

G:=Group("C5xC12.D4");
// GroupNames label

G:=SmallGroup(480,152);
// by ID

G=gap.SmallGroup(480,152);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-3,140,589,1410,136,4204,15686]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^12=1,c^4=b^6,d^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^3*c^3>;
// generators/relations

׿
×
𝔽