Extensions 1→N→G→Q→1 with N=C3×C4.F5 and Q=C2

Direct product G=N×Q with N=C3×C4.F5 and Q=C2
dρLabelID
C6×C4.F5240C6xC4.F5480,1048

Semidirect products G=N:Q with N=C3×C4.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.F5)⋊1C2 = D124F5φ: C2/C1C2 ⊆ Out C3×C4.F51208-(C3xC4.F5):1C2480,231
(C3×C4.F5)⋊2C2 = D602C4φ: C2/C1C2 ⊆ Out C3×C4.F51208+(C3xC4.F5):2C2480,233
(C3×C4.F5)⋊3C2 = D12.F5φ: C2/C1C2 ⊆ Out C3×C4.F52408-(C3xC4.F5):3C2480,989
(C3×C4.F5)⋊4C2 = Dic6.F5φ: C2/C1C2 ⊆ Out C3×C4.F52408+(C3xC4.F5):4C2480,992
(C3×C4.F5)⋊5C2 = S3×C4.F5φ: C2/C1C2 ⊆ Out C3×C4.F51208(C3xC4.F5):5C2480,988
(C3×C4.F5)⋊6C2 = D15⋊M4(2)φ: C2/C1C2 ⊆ Out C3×C4.F51208(C3xC4.F5):6C2480,991
(C3×C4.F5)⋊7C2 = C3×D4⋊F5φ: C2/C1C2 ⊆ Out C3×C4.F51208(C3xC4.F5):7C2480,288
(C3×C4.F5)⋊8C2 = C3×Q82F5φ: C2/C1C2 ⊆ Out C3×C4.F51208(C3xC4.F5):8C2480,290
(C3×C4.F5)⋊9C2 = C3×D4.F5φ: C2/C1C2 ⊆ Out C3×C4.F52408(C3xC4.F5):9C2480,1053
(C3×C4.F5)⋊10C2 = C3×Q8.F5φ: C2/C1C2 ⊆ Out C3×C4.F52408(C3xC4.F5):10C2480,1055
(C3×C4.F5)⋊11C2 = C3×D5⋊M4(2)φ: trivial image1204(C3xC4.F5):11C2480,1049

Non-split extensions G=N.Q with N=C3×C4.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.F5).1C2 = D10.Dic6φ: C2/C1C2 ⊆ Out C3×C4.F52408(C3xC4.F5).1C2480,237
(C3×C4.F5).2C2 = D10.2Dic6φ: C2/C1C2 ⊆ Out C3×C4.F52408(C3xC4.F5).2C2480,238
(C3×C4.F5).3C2 = C3×C40.C4φ: C2/C1C2 ⊆ Out C3×C4.F52404(C3xC4.F5).3C2480,275
(C3×C4.F5).4C2 = C3×D10.Q8φ: C2/C1C2 ⊆ Out C3×C4.F52404(C3xC4.F5).4C2480,276

׿
×
𝔽