Copied to
clipboard

G = C3×D4⋊F5order 480 = 25·3·5

Direct product of C3 and D4⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D4⋊F5, Dic101C12, C1512C4≀C2, D42(C3×F5), (C3×D4)⋊5F5, (C4×F5)⋊1C6, C4.F51C6, C4.2(C6×F5), (D4×C15)⋊5C4, (C5×D4)⋊2C12, (C12×F5)⋊6C2, C60.41(C2×C4), C20.2(C2×C12), D10.2(C3×D4), (C6×D5).37D4, C12.41(C2×F5), (C3×Dic10)⋊4C4, D42D5.2C6, (C3×Dic5).86D4, Dic5.21(C3×D4), C6.32(C22⋊F5), C30.32(C22⋊C4), (D5×C12).83C22, C51(C3×C4≀C2), (C3×C4.F5)⋊7C2, (C4×D5).8(C2×C6), C2.7(C3×C22⋊F5), C10.6(C3×C22⋊C4), (C3×D42D5).5C2, SmallGroup(480,288)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D4⋊F5
C1C5C10C20C4×D5D5×C12C3×C4.F5 — C3×D4⋊F5
C5C10C20 — C3×D4⋊F5
C1C6C12C3×D4

Generators and relations for C3×D4⋊F5
 G = < a,b,c,d,e | a3=b4=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b-1c, ede-1=d3 >

Subgroups: 328 in 88 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D4, D4, Q8, D5, C10, C10, C12, C12, C2×C6, C15, C42, M4(2), C4○D4, Dic5, Dic5, C20, F5, D10, C2×C10, C24, C2×C12, C3×D4, C3×D4, C3×Q8, C3×D5, C30, C30, C4≀C2, C5⋊C8, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C2×F5, C4×C12, C3×M4(2), C3×C4○D4, C3×Dic5, C3×Dic5, C60, C3×F5, C6×D5, C2×C30, C4.F5, C4×F5, D42D5, C3×C4≀C2, C3×C5⋊C8, C3×Dic10, D5×C12, C6×Dic5, C3×C5⋊D4, D4×C15, C6×F5, D4⋊F5, C3×C4.F5, C12×F5, C3×D42D5, C3×D4⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, F5, C2×C12, C3×D4, C4≀C2, C2×F5, C3×C22⋊C4, C3×F5, C22⋊F5, C3×C4≀C2, C6×F5, D4⋊F5, C3×C22⋊F5, C3×D4⋊F5

Smallest permutation representation of C3×D4⋊F5
On 120 points
Generators in S120
(1 44 24)(2 45 25)(3 41 21)(4 42 22)(5 43 23)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 79)(2 80)(3 76)(4 77)(5 78)(6 71)(7 72)(8 73)(9 74)(10 75)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 96)(22 97)(23 98)(24 99)(25 100)(26 91)(27 92)(28 93)(29 94)(30 95)(31 81)(32 82)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 89)(40 90)(41 116)(42 117)(43 118)(44 119)(45 120)(46 111)(47 112)(48 113)(49 114)(50 115)(51 101)(52 102)(53 103)(54 104)(55 105)(56 106)(57 107)(58 108)(59 109)(60 110)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 14 9 19)(2 11 8 17)(3 13 7 20)(4 15 6 18)(5 12 10 16)(21 33 27 40)(22 35 26 38)(23 32 30 36)(24 34 29 39)(25 31 28 37)(41 53 47 60)(42 55 46 58)(43 52 50 56)(44 54 49 59)(45 51 48 57)(61 63 62 65)(66 68 67 70)(71 73 72 75)(76 78 77 80)(81 83 82 85)(86 88 87 90)(91 93 92 95)(96 98 97 100)(101 103 102 105)(106 108 107 110)(111 113 112 115)(116 118 117 120)

G:=sub<Sym(120)| (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,79)(2,80)(3,76)(4,77)(5,78)(6,71)(7,72)(8,73)(9,74)(10,75)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,14,9,19)(2,11,8,17)(3,13,7,20)(4,15,6,18)(5,12,10,16)(21,33,27,40)(22,35,26,38)(23,32,30,36)(24,34,29,39)(25,31,28,37)(41,53,47,60)(42,55,46,58)(43,52,50,56)(44,54,49,59)(45,51,48,57)(61,63,62,65)(66,68,67,70)(71,73,72,75)(76,78,77,80)(81,83,82,85)(86,88,87,90)(91,93,92,95)(96,98,97,100)(101,103,102,105)(106,108,107,110)(111,113,112,115)(116,118,117,120)>;

G:=Group( (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,79)(2,80)(3,76)(4,77)(5,78)(6,71)(7,72)(8,73)(9,74)(10,75)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,14,9,19)(2,11,8,17)(3,13,7,20)(4,15,6,18)(5,12,10,16)(21,33,27,40)(22,35,26,38)(23,32,30,36)(24,34,29,39)(25,31,28,37)(41,53,47,60)(42,55,46,58)(43,52,50,56)(44,54,49,59)(45,51,48,57)(61,63,62,65)(66,68,67,70)(71,73,72,75)(76,78,77,80)(81,83,82,85)(86,88,87,90)(91,93,92,95)(96,98,97,100)(101,103,102,105)(106,108,107,110)(111,113,112,115)(116,118,117,120) );

G=PermutationGroup([[(1,44,24),(2,45,25),(3,41,21),(4,42,22),(5,43,23),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,79),(2,80),(3,76),(4,77),(5,78),(6,71),(7,72),(8,73),(9,74),(10,75),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,96),(22,97),(23,98),(24,99),(25,100),(26,91),(27,92),(28,93),(29,94),(30,95),(31,81),(32,82),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,89),(40,90),(41,116),(42,117),(43,118),(44,119),(45,120),(46,111),(47,112),(48,113),(49,114),(50,115),(51,101),(52,102),(53,103),(54,104),(55,105),(56,106),(57,107),(58,108),(59,109),(60,110)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,14,9,19),(2,11,8,17),(3,13,7,20),(4,15,6,18),(5,12,10,16),(21,33,27,40),(22,35,26,38),(23,32,30,36),(24,34,29,39),(25,31,28,37),(41,53,47,60),(42,55,46,58),(43,52,50,56),(44,54,49,59),(45,51,48,57),(61,63,62,65),(66,68,67,70),(71,73,72,75),(76,78,77,80),(81,83,82,85),(86,88,87,90),(91,93,92,95),(96,98,97,100),(101,103,102,105),(106,108,107,110),(111,113,112,115),(116,118,117,120)]])

57 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F4G4H 5 6A6B6C6D6E6F8A8B10A10B10C12A12B12C12D12E12F12G···12N12O12P15A15B 20 24A24B24C24D30A30B30C30D30E30F60A60B
order1222334444444456666668810101012121212121212···121212151520242424243030303030306060
size11410112551010101020411441010202048822555510···1020204482020202044888888

57 irreducible representations

dim11111111111122222244444488
type+++++++++-
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4C3×D4C3×D4C4≀C2C3×C4≀C2F5C2×F5C3×F5C22⋊F5C6×F5C3×C22⋊F5D4⋊F5C3×D4⋊F5
kernelC3×D4⋊F5C3×C4.F5C12×F5C3×D42D5D4⋊F5C3×Dic10D4×C15C4.F5C4×F5D42D5Dic10C5×D4C3×Dic5C6×D5Dic5D10C15C5C3×D4C12D4C6C4C2C3C1
# reps11112222224411224811222412

Matrix representation of C3×D4⋊F5 in GL8(𝔽241)

150000000
015000000
00100000
00010000
00001000
00000100
00000010
00000001
,
2400000000
0240000000
0017700000
00144640000
0000240000
0000024000
0000002400
0000000240
,
01000000
10000000
00119790000
00161220000
0000124077
00002341172340
00000234117234
0000770124
,
10000000
01000000
00100000
00010000
00000100
00000010
00000001
0000240240240240
,
1770000000
064000000
006400000
0014010000
0000240000
0000000240
0000024000
00001111

G:=sub<GL(8,GF(241))| [15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,177,144,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,119,16,0,0,0,0,0,0,79,122,0,0,0,0,0,0,0,0,124,234,0,7,0,0,0,0,0,117,234,7,0,0,0,0,7,234,117,0,0,0,0,0,7,0,234,124],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240],[177,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,140,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,0,1,0,0,0,0,0,0,240,1,0,0,0,0,0,0,0,1,0,0,0,0,0,240,0,1] >;

C3×D4⋊F5 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes F_5
% in TeX

G:=Group("C3xD4:F5");
// GroupNames label

G:=SmallGroup(480,288);
// by ID

G=gap.SmallGroup(480,288);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,136,2524,1271,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽