Copied to
clipboard

G = D15⋊M4(2)  order 480 = 25·3·5

The semidirect product of D15 and M4(2) acting via M4(2)/C4=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D151M4(2), C5⋊C82D6, C4.F55S3, D15⋊C82C2, D6.F53C2, (C4×S3).2F5, D6.7(C2×F5), C52(S3×M4(2)), C4.21(S3×F5), (S3×C20).2C4, C20.21(C4×S3), C60.21(C2×C4), (C4×D15).2C4, D30.9(C2×C4), (C4×D5).66D6, C152(C2×M4(2)), C12.17(C2×F5), C12.F56C2, C15⋊C82C22, D10.22(C4×S3), C32(D5⋊M4(2)), (D5×Dic3).6C4, C6.10(C22×F5), C30.10(C22×C4), Dic3.13(C2×F5), Dic15.11(C2×C4), (D5×C12).52C22, D30.C2.14C22, (S3×Dic5).14C22, Dic5.30(C22×S3), (C3×Dic5).28C23, (C4×S3×D5).4C2, (C2×S3×D5).6C4, C2.14(C2×S3×F5), (C3×C5⋊C8)⋊2C22, C10.10(S3×C2×C4), (C3×C4.F5)⋊6C2, (S3×C10).9(C2×C4), (C6×D5).19(C2×C4), (C5×Dic3).11(C2×C4), SmallGroup(480,991)

Series: Derived Chief Lower central Upper central

C1C30 — D15⋊M4(2)
C1C5C15C30C3×Dic5C3×C5⋊C8D15⋊C8 — D15⋊M4(2)
C15C30 — D15⋊M4(2)
C1C2C4

Generators and relations for D15⋊M4(2)
 G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=a7, dad=a4, cbc-1=a6b, dbd=a3b, dcd=c5 >

Subgroups: 676 in 136 conjugacy classes, 48 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, C23, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, D5⋊C8, C4.F5, C4.F5, C22.F5, C2×C4×D5, S3×M4(2), C3×C5⋊C8, C15⋊C8, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, D5⋊M4(2), D15⋊C8, D6.F5, C3×C4.F5, C12.F5, C4×S3×D5, D15⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, F5, C4×S3, C22×S3, C2×M4(2), C2×F5, S3×C2×C4, C22×F5, S3×M4(2), S3×F5, D5⋊M4(2), C2×S3×F5, D15⋊M4(2)

Smallest permutation representation of D15⋊M4(2)
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 52)(32 51)(33 50)(34 49)(35 48)(36 47)(37 46)(38 60)(39 59)(40 58)(41 57)(42 56)(43 55)(44 54)(45 53)(61 80)(62 79)(63 78)(64 77)(65 76)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(91 118)(92 117)(93 116)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 120)(105 119)
(1 104 31 81 16 106 53 61)(2 102 35 88 17 119 57 68)(3 100 39 80 18 117 46 75)(4 98 43 87 19 115 50 67)(5 96 32 79 20 113 54 74)(6 94 36 86 21 111 58 66)(7 92 40 78 22 109 47 73)(8 105 44 85 23 107 51 65)(9 103 33 77 24 120 55 72)(10 101 37 84 25 118 59 64)(11 99 41 76 26 116 48 71)(12 97 45 83 27 114 52 63)(13 95 34 90 28 112 56 70)(14 93 38 82 29 110 60 62)(15 91 42 89 30 108 49 69)
(2 5)(3 9)(4 13)(7 10)(8 14)(12 15)(17 20)(18 24)(19 28)(22 25)(23 29)(27 30)(32 35)(33 39)(34 43)(37 40)(38 44)(42 45)(46 55)(47 59)(49 52)(50 56)(51 60)(54 57)(61 81)(62 85)(63 89)(64 78)(65 82)(66 86)(67 90)(68 79)(69 83)(70 87)(71 76)(72 80)(73 84)(74 88)(75 77)(91 114)(92 118)(93 107)(94 111)(95 115)(96 119)(97 108)(98 112)(99 116)(100 120)(101 109)(102 113)(103 117)(104 106)(105 110)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,120)(105,119), (1,104,31,81,16,106,53,61)(2,102,35,88,17,119,57,68)(3,100,39,80,18,117,46,75)(4,98,43,87,19,115,50,67)(5,96,32,79,20,113,54,74)(6,94,36,86,21,111,58,66)(7,92,40,78,22,109,47,73)(8,105,44,85,23,107,51,65)(9,103,33,77,24,120,55,72)(10,101,37,84,25,118,59,64)(11,99,41,76,26,116,48,71)(12,97,45,83,27,114,52,63)(13,95,34,90,28,112,56,70)(14,93,38,82,29,110,60,62)(15,91,42,89,30,108,49,69), (2,5)(3,9)(4,13)(7,10)(8,14)(12,15)(17,20)(18,24)(19,28)(22,25)(23,29)(27,30)(32,35)(33,39)(34,43)(37,40)(38,44)(42,45)(46,55)(47,59)(49,52)(50,56)(51,60)(54,57)(61,81)(62,85)(63,89)(64,78)(65,82)(66,86)(67,90)(68,79)(69,83)(70,87)(71,76)(72,80)(73,84)(74,88)(75,77)(91,114)(92,118)(93,107)(94,111)(95,115)(96,119)(97,108)(98,112)(99,116)(100,120)(101,109)(102,113)(103,117)(104,106)(105,110)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,120)(105,119), (1,104,31,81,16,106,53,61)(2,102,35,88,17,119,57,68)(3,100,39,80,18,117,46,75)(4,98,43,87,19,115,50,67)(5,96,32,79,20,113,54,74)(6,94,36,86,21,111,58,66)(7,92,40,78,22,109,47,73)(8,105,44,85,23,107,51,65)(9,103,33,77,24,120,55,72)(10,101,37,84,25,118,59,64)(11,99,41,76,26,116,48,71)(12,97,45,83,27,114,52,63)(13,95,34,90,28,112,56,70)(14,93,38,82,29,110,60,62)(15,91,42,89,30,108,49,69), (2,5)(3,9)(4,13)(7,10)(8,14)(12,15)(17,20)(18,24)(19,28)(22,25)(23,29)(27,30)(32,35)(33,39)(34,43)(37,40)(38,44)(42,45)(46,55)(47,59)(49,52)(50,56)(51,60)(54,57)(61,81)(62,85)(63,89)(64,78)(65,82)(66,86)(67,90)(68,79)(69,83)(70,87)(71,76)(72,80)(73,84)(74,88)(75,77)(91,114)(92,118)(93,107)(94,111)(95,115)(96,119)(97,108)(98,112)(99,116)(100,120)(101,109)(102,113)(103,117)(104,106)(105,110) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,52),(32,51),(33,50),(34,49),(35,48),(36,47),(37,46),(38,60),(39,59),(40,58),(41,57),(42,56),(43,55),(44,54),(45,53),(61,80),(62,79),(63,78),(64,77),(65,76),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(91,118),(92,117),(93,116),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,120),(105,119)], [(1,104,31,81,16,106,53,61),(2,102,35,88,17,119,57,68),(3,100,39,80,18,117,46,75),(4,98,43,87,19,115,50,67),(5,96,32,79,20,113,54,74),(6,94,36,86,21,111,58,66),(7,92,40,78,22,109,47,73),(8,105,44,85,23,107,51,65),(9,103,33,77,24,120,55,72),(10,101,37,84,25,118,59,64),(11,99,41,76,26,116,48,71),(12,97,45,83,27,114,52,63),(13,95,34,90,28,112,56,70),(14,93,38,82,29,110,60,62),(15,91,42,89,30,108,49,69)], [(2,5),(3,9),(4,13),(7,10),(8,14),(12,15),(17,20),(18,24),(19,28),(22,25),(23,29),(27,30),(32,35),(33,39),(34,43),(37,40),(38,44),(42,45),(46,55),(47,59),(49,52),(50,56),(51,60),(54,57),(61,81),(62,85),(63,89),(64,78),(65,82),(66,86),(67,90),(68,79),(69,83),(70,87),(71,76),(72,80),(73,84),(74,88),(75,77),(91,114),(92,118),(93,107),(94,111),(95,115),(96,119),(97,108),(98,112),(99,116),(100,120),(101,109),(102,113),(103,117),(104,106),(105,110)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B8A8B8C8D8E8F8G8H10A10B10C12A12B12C 15 20A20B20C20D24A24B24C24D 30 60A60B
order122222344444456688888888101010121212152020202024242424306060
size11610151522335530422010101010303030304121241010844121220202020888

42 irreducible representations

dim1111111111222222444444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4S3D6D6M4(2)C4×S3C4×S3F5C2×F5C2×F5C2×F5S3×M4(2)D5⋊M4(2)S3×F5C2×S3×F5D15⋊M4(2)
kernelD15⋊M4(2)D15⋊C8D6.F5C3×C4.F5C12.F5C4×S3×D5D5×Dic3S3×C20C4×D15C2×S3×D5C4.F5C5⋊C8C4×D5D15C20D10C4×S3Dic3C12D6C5C3C4C2C1
# reps1221112222121422111124112

Matrix representation of D15⋊M4(2) in GL6(𝔽241)

24010000
24000000
005218900
005224000
00184150240
00226151189
,
24000000
24010000
00024000
00240000
00001891
000018952
,
24000000
02400000
000136104137
00531882137
004772211219
00011915883
,
24000000
02400000
001895200
002405200
00157952189
00681731189

G:=sub<GL(6,GF(241))| [240,240,0,0,0,0,1,0,0,0,0,0,0,0,52,52,184,226,0,0,189,240,15,15,0,0,0,0,0,1,0,0,0,0,240,189],[240,240,0,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,240,0,0,0,0,0,0,0,189,189,0,0,0,0,1,52],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,53,47,0,0,0,136,188,72,119,0,0,104,2,211,158,0,0,137,137,219,83],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,189,240,15,68,0,0,52,52,79,173,0,0,0,0,52,1,0,0,0,0,189,189] >;

D15⋊M4(2) in GAP, Magma, Sage, TeX

D_{15}\rtimes M_4(2)
% in TeX

G:=Group("D15:M4(2)");
// GroupNames label

G:=SmallGroup(480,991);
// by ID

G=gap.SmallGroup(480,991);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,100,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^7,d*a*d=a^4,c*b*c^-1=a^6*b,d*b*d=a^3*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽