Copied to
clipboard

G = S3×C4.F5order 480 = 25·3·5

Direct product of S3 and C4.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C4.F5, C5⋊C81D6, C51(S3×M4(2)), (C4×S3).1F5, C4.20(S3×F5), (S3×C20).1C4, C20.20(C4×S3), C60.20(C2×C4), D30.8(C2×C4), (C4×D5).65D6, (C4×D15).1C4, C151(C2×M4(2)), D6.12(C2×F5), C12.15(C2×F5), C12.F55C2, C15⋊C81C22, C6.7(C22×F5), D10.21(C4×S3), (C5×S3)⋊1M4(2), Dic3.F51C2, C30.7(C22×C4), Dic3.8(C2×F5), (D5×Dic3).5C4, Dic15.10(C2×C4), (D5×C12).51C22, D30.C2.13C22, (C3×Dic5).25C23, Dic5.27(C22×S3), (S3×Dic5).13C22, (S3×C5⋊C8)⋊2C2, C31(C2×C4.F5), C10.7(S3×C2×C4), (C2×S3×D5).5C4, (C4×S3×D5).3C2, C2.11(C2×S3×F5), (C3×C5⋊C8)⋊1C22, (C3×C4.F5)⋊5C2, (S3×C10).8(C2×C4), (C6×D5).16(C2×C4), (C5×Dic3).10(C2×C4), SmallGroup(480,988)

Series: Derived Chief Lower central Upper central

C1C30 — S3×C4.F5
C1C5C15C30C3×Dic5C3×C5⋊C8S3×C5⋊C8 — S3×C4.F5
C15C30 — S3×C4.F5
C1C2C4

Generators and relations for S3×C4.F5
 G = < a,b,c,d,e | a3=b2=c4=d5=1, e4=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 676 in 136 conjugacy classes, 50 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C8, C2×C4, C23, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C4.F5, C4.F5, C2×C5⋊C8, C2×C4×D5, S3×M4(2), C3×C5⋊C8, C15⋊C8, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, C2×C4.F5, S3×C5⋊C8, Dic3.F5, C3×C4.F5, C12.F5, C4×S3×D5, S3×C4.F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, F5, C4×S3, C22×S3, C2×M4(2), C2×F5, S3×C2×C4, C4.F5, C22×F5, S3×M4(2), S3×F5, C2×C4.F5, C2×S3×F5, S3×C4.F5

Smallest permutation representation of S3×C4.F5
On 120 points
Generators in S120
(1 64 50)(2 57 51)(3 58 52)(4 59 53)(5 60 54)(6 61 55)(7 62 56)(8 63 49)(9 69 39)(10 70 40)(11 71 33)(12 72 34)(13 65 35)(14 66 36)(15 67 37)(16 68 38)(17 48 120)(18 41 113)(19 42 114)(20 43 115)(21 44 116)(22 45 117)(23 46 118)(24 47 119)(25 95 102)(26 96 103)(27 89 104)(28 90 97)(29 91 98)(30 92 99)(31 93 100)(32 94 101)(73 84 105)(74 85 106)(75 86 107)(76 87 108)(77 88 109)(78 81 110)(79 82 111)(80 83 112)
(9 39)(10 40)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 95)(26 96)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)(81 110)(82 111)(83 112)(84 105)(85 106)(86 107)(87 108)(88 109)
(1 7 5 3)(2 4 6 8)(9 43 13 47)(10 48 14 44)(11 45 15 41)(12 42 16 46)(17 36 21 40)(18 33 22 37)(19 38 23 34)(20 35 24 39)(25 81 29 85)(26 86 30 82)(27 83 31 87)(28 88 32 84)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 119 69 115)(66 116 70 120)(67 113 71 117)(68 118 72 114)(73 97 77 101)(74 102 78 98)(75 99 79 103)(76 104 80 100)(89 112 93 108)(90 109 94 105)(91 106 95 110)(92 111 96 107)
(1 73 113 65 99)(2 66 74 100 114)(3 101 67 115 75)(4 116 102 76 68)(5 77 117 69 103)(6 70 78 104 118)(7 97 71 119 79)(8 120 98 80 72)(9 96 54 109 45)(10 110 89 46 55)(11 47 111 56 90)(12 49 48 91 112)(13 92 50 105 41)(14 106 93 42 51)(15 43 107 52 94)(16 53 44 95 108)(17 29 83 34 63)(18 35 30 64 84)(19 57 36 85 31)(20 86 58 32 37)(21 25 87 38 59)(22 39 26 60 88)(23 61 40 81 27)(24 82 62 28 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (1,7,5,3)(2,4,6,8)(9,43,13,47)(10,48,14,44)(11,45,15,41)(12,42,16,46)(17,36,21,40)(18,33,22,37)(19,38,23,34)(20,35,24,39)(25,81,29,85)(26,86,30,82)(27,83,31,87)(28,88,32,84)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,119,69,115)(66,116,70,120)(67,113,71,117)(68,118,72,114)(73,97,77,101)(74,102,78,98)(75,99,79,103)(76,104,80,100)(89,112,93,108)(90,109,94,105)(91,106,95,110)(92,111,96,107), (1,73,113,65,99)(2,66,74,100,114)(3,101,67,115,75)(4,116,102,76,68)(5,77,117,69,103)(6,70,78,104,118)(7,97,71,119,79)(8,120,98,80,72)(9,96,54,109,45)(10,110,89,46,55)(11,47,111,56,90)(12,49,48,91,112)(13,92,50,105,41)(14,106,93,42,51)(15,43,107,52,94)(16,53,44,95,108)(17,29,83,34,63)(18,35,30,64,84)(19,57,36,85,31)(20,86,58,32,37)(21,25,87,38,59)(22,39,26,60,88)(23,61,40,81,27)(24,82,62,28,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (1,7,5,3)(2,4,6,8)(9,43,13,47)(10,48,14,44)(11,45,15,41)(12,42,16,46)(17,36,21,40)(18,33,22,37)(19,38,23,34)(20,35,24,39)(25,81,29,85)(26,86,30,82)(27,83,31,87)(28,88,32,84)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,119,69,115)(66,116,70,120)(67,113,71,117)(68,118,72,114)(73,97,77,101)(74,102,78,98)(75,99,79,103)(76,104,80,100)(89,112,93,108)(90,109,94,105)(91,106,95,110)(92,111,96,107), (1,73,113,65,99)(2,66,74,100,114)(3,101,67,115,75)(4,116,102,76,68)(5,77,117,69,103)(6,70,78,104,118)(7,97,71,119,79)(8,120,98,80,72)(9,96,54,109,45)(10,110,89,46,55)(11,47,111,56,90)(12,49,48,91,112)(13,92,50,105,41)(14,106,93,42,51)(15,43,107,52,94)(16,53,44,95,108)(17,29,83,34,63)(18,35,30,64,84)(19,57,36,85,31)(20,86,58,32,37)(21,25,87,38,59)(22,39,26,60,88)(23,61,40,81,27)(24,82,62,28,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,64,50),(2,57,51),(3,58,52),(4,59,53),(5,60,54),(6,61,55),(7,62,56),(8,63,49),(9,69,39),(10,70,40),(11,71,33),(12,72,34),(13,65,35),(14,66,36),(15,67,37),(16,68,38),(17,48,120),(18,41,113),(19,42,114),(20,43,115),(21,44,116),(22,45,117),(23,46,118),(24,47,119),(25,95,102),(26,96,103),(27,89,104),(28,90,97),(29,91,98),(30,92,99),(31,93,100),(32,94,101),(73,84,105),(74,85,106),(75,86,107),(76,87,108),(77,88,109),(78,81,110),(79,82,111),(80,83,112)], [(9,39),(10,40),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,95),(26,96),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62),(81,110),(82,111),(83,112),(84,105),(85,106),(86,107),(87,108),(88,109)], [(1,7,5,3),(2,4,6,8),(9,43,13,47),(10,48,14,44),(11,45,15,41),(12,42,16,46),(17,36,21,40),(18,33,22,37),(19,38,23,34),(20,35,24,39),(25,81,29,85),(26,86,30,82),(27,83,31,87),(28,88,32,84),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,119,69,115),(66,116,70,120),(67,113,71,117),(68,118,72,114),(73,97,77,101),(74,102,78,98),(75,99,79,103),(76,104,80,100),(89,112,93,108),(90,109,94,105),(91,106,95,110),(92,111,96,107)], [(1,73,113,65,99),(2,66,74,100,114),(3,101,67,115,75),(4,116,102,76,68),(5,77,117,69,103),(6,70,78,104,118),(7,97,71,119,79),(8,120,98,80,72),(9,96,54,109,45),(10,110,89,46,55),(11,47,111,56,90),(12,49,48,91,112),(13,92,50,105,41),(14,106,93,42,51),(15,43,107,52,94),(16,53,44,95,108),(17,29,83,34,63),(18,35,30,64,84),(19,57,36,85,31),(20,86,58,32,37),(21,25,87,38,59),(22,39,26,60,88),(23,61,40,81,27),(24,82,62,28,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B8A8B8C8D8E8F8G8H10A10B10C12A12B12C 15 20A20B20C20D24A24B24C24D 30 60A60B
order122222344444456688888888101010121212152020202024242424306060
size11331030225561515422010101010303030304121241010844121220202020888

42 irreducible representations

dim1111111111222222444444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4S3D6D6M4(2)C4×S3C4×S3F5C2×F5C2×F5C2×F5C4.F5S3×M4(2)S3×F5C2×S3×F5S3×C4.F5
kernelS3×C4.F5S3×C5⋊C8Dic3.F5C3×C4.F5C12.F5C4×S3×D5D5×Dic3S3×C20C4×D15C2×S3×D5C4.F5C5⋊C8C4×D5C5×S3C20D10C4×S3Dic3C12D6S3C5C4C2C1
# reps1221112222121422111142112

Matrix representation of S3×C4.F5 in GL8(𝔽241)

10000000
01000000
002402400000
00100000
00001000
00000100
00000010
00000001
,
2400000000
0240000000
00100000
002402400000
00001000
00000100
00000010
00000001
,
640000000
64177000000
0024000000
0002400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
0000000240
0000100240
0000010240
0000001240
,
2402000000
881000000
0024000000
0002400000
00001301111960
0000851110130
0000130011185
00000196111130

G:=sub<GL(8,GF(241))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[64,64,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240],[240,88,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,130,85,130,0,0,0,0,0,111,111,0,196,0,0,0,0,196,0,111,111,0,0,0,0,0,130,85,130] >;

S3×C4.F5 in GAP, Magma, Sage, TeX

S_3\times C_4.F_5
% in TeX

G:=Group("S3xC4.F5");
// GroupNames label

G:=SmallGroup(480,988);
// by ID

G=gap.SmallGroup(480,988);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,422,100,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^5=1,e^4=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽