Copied to
clipboard

G = D602C4order 480 = 25·3·5

2nd semidirect product of D60 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D602C4, Dic64F5, D10.2D12, C153C4≀C2, C4.F52S3, C20.7(C4×S3), C60.4(C2×C4), C12.4(C2×F5), C4.11(S3×F5), (C5×Dic6)⋊2C4, (C4×D5).25D6, C31(Q82F5), (C6×D5).23D4, C51(D12⋊C4), C10.7(D6⋊C4), C2.10(D6⋊F5), C6.7(C22⋊F5), C12.28D10.3C2, C30.7(C22⋊C4), (C3×Dic5).26D4, (D5×C12).33C22, Dic5.27(C3⋊D4), (C4×C3⋊F5)⋊2C2, (C3×C4.F5)⋊2C2, SmallGroup(480,233)

Series: Derived Chief Lower central Upper central

C1C60 — D602C4
C1C5C15C30C3×Dic5D5×C12C3×C4.F5 — D602C4
C15C30C60 — D602C4
C1C2C4

Generators and relations for D602C4
 G = < a,b,c | a60=b2=c4=1, bab=a-1, cac-1=a17, cbc-1=a31b >

Subgroups: 612 in 88 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, F5, D10, D10, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D5, D15, C30, C4≀C2, C5⋊C8, C4×D5, C4×D5, D20, C5×Q8, C2×F5, C4×Dic3, C3×M4(2), C4○D12, C5×Dic3, C3×Dic5, C60, C3⋊F5, C6×D5, D30, C4.F5, C4×F5, Q82D5, D12⋊C4, C3×C5⋊C8, D30.C2, C3⋊D20, D5×C12, C5×Dic6, D60, C2×C3⋊F5, Q82F5, C3×C4.F5, C4×C3⋊F5, C12.28D10, D602C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C4≀C2, C2×F5, D6⋊C4, C22⋊F5, D12⋊C4, S3×F5, Q82F5, D6⋊F5, D602C4

Smallest permutation representation of D602C4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 105)(2 104)(3 103)(4 102)(5 101)(6 100)(7 99)(8 98)(9 97)(10 96)(11 95)(12 94)(13 93)(14 92)(15 91)(16 90)(17 89)(18 88)(19 87)(20 86)(21 85)(22 84)(23 83)(24 82)(25 81)(26 80)(27 79)(28 78)(29 77)(30 76)(31 75)(32 74)(33 73)(34 72)(35 71)(36 70)(37 69)(38 68)(39 67)(40 66)(41 65)(42 64)(43 63)(44 62)(45 61)(46 120)(47 119)(48 118)(49 117)(50 116)(51 115)(52 114)(53 113)(54 112)(55 111)(56 110)(57 109)(58 108)(59 107)(60 106)
(1 16 31 46)(2 9 20 3)(4 55 58 37)(5 48 47 54)(6 41 36 11)(7 34 25 28)(8 27 14 45)(10 13 52 19)(12 59 30 53)(15 38 57 44)(17 24 35 18)(21 56 51 26)(22 49 40 43)(23 42 29 60)(32 39 50 33)(62 114 110 78)(63 107 99 95)(64 100 88 112)(65 93 77 69)(66 86)(67 79 115 103)(68 72 104 120)(70 118 82 94)(71 111)(73 97 109 85)(74 90 98 102)(75 83 87 119)(80 108 92 84)(81 101)(89 105 113 117)(96 116)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,72)(35,71)(36,70)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106), (1,16,31,46)(2,9,20,3)(4,55,58,37)(5,48,47,54)(6,41,36,11)(7,34,25,28)(8,27,14,45)(10,13,52,19)(12,59,30,53)(15,38,57,44)(17,24,35,18)(21,56,51,26)(22,49,40,43)(23,42,29,60)(32,39,50,33)(62,114,110,78)(63,107,99,95)(64,100,88,112)(65,93,77,69)(66,86)(67,79,115,103)(68,72,104,120)(70,118,82,94)(71,111)(73,97,109,85)(74,90,98,102)(75,83,87,119)(80,108,92,84)(81,101)(89,105,113,117)(96,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,84)(23,83)(24,82)(25,81)(26,80)(27,79)(28,78)(29,77)(30,76)(31,75)(32,74)(33,73)(34,72)(35,71)(36,70)(37,69)(38,68)(39,67)(40,66)(41,65)(42,64)(43,63)(44,62)(45,61)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106), (1,16,31,46)(2,9,20,3)(4,55,58,37)(5,48,47,54)(6,41,36,11)(7,34,25,28)(8,27,14,45)(10,13,52,19)(12,59,30,53)(15,38,57,44)(17,24,35,18)(21,56,51,26)(22,49,40,43)(23,42,29,60)(32,39,50,33)(62,114,110,78)(63,107,99,95)(64,100,88,112)(65,93,77,69)(66,86)(67,79,115,103)(68,72,104,120)(70,118,82,94)(71,111)(73,97,109,85)(74,90,98,102)(75,83,87,119)(80,108,92,84)(81,101)(89,105,113,117)(96,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,105),(2,104),(3,103),(4,102),(5,101),(6,100),(7,99),(8,98),(9,97),(10,96),(11,95),(12,94),(13,93),(14,92),(15,91),(16,90),(17,89),(18,88),(19,87),(20,86),(21,85),(22,84),(23,83),(24,82),(25,81),(26,80),(27,79),(28,78),(29,77),(30,76),(31,75),(32,74),(33,73),(34,72),(35,71),(36,70),(37,69),(38,68),(39,67),(40,66),(41,65),(42,64),(43,63),(44,62),(45,61),(46,120),(47,119),(48,118),(49,117),(50,116),(51,115),(52,114),(53,113),(54,112),(55,111),(56,110),(57,109),(58,108),(59,107),(60,106)], [(1,16,31,46),(2,9,20,3),(4,55,58,37),(5,48,47,54),(6,41,36,11),(7,34,25,28),(8,27,14,45),(10,13,52,19),(12,59,30,53),(15,38,57,44),(17,24,35,18),(21,56,51,26),(22,49,40,43),(23,42,29,60),(32,39,50,33),(62,114,110,78),(63,107,99,95),(64,100,88,112),(65,93,77,69),(66,86),(67,79,115,103),(68,72,104,120),(70,118,82,94),(71,111),(73,97,109,85),(74,90,98,102),(75,83,87,119),(80,108,92,84),(81,101),(89,105,113,117),(96,116)]])

33 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B8A8B 10 12A12B12C 15 20A20B20C24A24B24C24D 30 60A60B
order122234444444456688101212121520202024242424306060
size111060225512303030304220202044101088242420202020888

33 irreducible representations

dim1111112222222244448888
type++++++++++++++++
imageC1C2C2C2C4C4S3D4D4D6C3⋊D4C4×S3D12C4≀C2F5C2×F5C22⋊F5D12⋊C4S3×F5Q82F5D6⋊F5D602C4
kernelD602C4C3×C4.F5C4×C3⋊F5C12.28D10C5×Dic6D60C4.F5C3×Dic5C6×D5C4×D5Dic5C20D10C15Dic6C12C6C5C4C3C2C1
# reps1111221111222411221112

Matrix representation of D602C4 in GL8(𝔽241)

1770000000
064000000
0002400000
0012400000
0000024010
0000024001
0000024000
0000124000
,
0240000000
2400000000
0024010000
00010000
0000124000
0000024000
0000024001
0000024010
,
640000000
01000000
000640000
006400000
00000100
00000001
00001000
00000010

G:=sub<GL(8,GF(241))| [177,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,240,240,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0] >;

D602C4 in GAP, Magma, Sage, TeX

D_{60}\rtimes_2C_4
% in TeX

G:=Group("D60:2C4");
// GroupNames label

G:=SmallGroup(480,233);
// by ID

G=gap.SmallGroup(480,233);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,120,100,675,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c|a^60=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^17,c*b*c^-1=a^31*b>;
// generators/relations

׿
×
𝔽